STAR Online Meta-Data Collection Framework
Integration with the Pre-existing Controls Infrastructure

Dmitry Arkhipkin, Jerome Lauret
Brookhaven National Laboratory
Outline

- STAR & MIRA Overview
- Controls Upgrade Process
- EPICS<->MQTT
 - Bridging two worlds
 - Deployment overview
- Use-Case Example
 - Alarm Handler Upgrade
 - ALH User Interface
- Summary & Outlook
STAR detector:

- 18 subsystems, 3 more being added – continual upgrade process
- Slow Control System is EPICS-based, having over 40k process variables at start, ~80k now
- Online Ecosystem includes DAQ, RTS, CS, ALH, Monitoring, subsystem-developed services – all talking to each other
- Since ~2009, obvious need for a modern service integration bus was clear
- MIRA framework was created to answer that need:

MIRA Framework Overview

Features:
- Scalable architecture
- Inter-operable, low-overhead protocol
- Payload-agnostic messaging
- Quality of Service regulation

Originally designed to implement better meta-data collection (archiver) and provide basic service messaging bus

Implemented using Message-Queuing service bus - AMQP, later MQTT

Supports Complex Event Processing (CEP)

With time, expanded to the Control System realm and Alarm Handling

Slow Controls: Upgrade

Current Conditions:
- Current Detector Control System is mostly EPICS-based
- New hardware is sometimes shipped with EPICS drivers
- Old hardware is being gradually replaced with new hardware
- Manpower is sparse, can't upgrade everything at once, so...

Staged Control System Upgrade:
- avoid drastic changes in well-defined experimental procedures
- gradually replace components with newer technologies
- provide extended functionality and better maintenance for years to come
EPICS to MQTT and back again

- **MQ Bridge - Microservice architecture**
 - scalable approach, deploy as many independent instances as you need
 - uses light-weight, technology-agnostic protocol - MQTT
 - enhances cohesion, decreases coupling
 - allows to evolve incrementally, eases maintenance

- **EPICS<->MQ Bridge upgrade steps:**
 a) keep IOC, keep UI, add EPICS<->MQTT converter
 b) keep IOC, replace EPICS UI with MIRA's web interface
 c) use MIRA's UI, replace EPICS IOC with MQ-enabled IOC emulator
Bridge: step 1 Expose EPICS to MIRA's service bus

DAQ network	protected network	intranet	external
TPC detector | TPC IOC | EPICS CA | TPC UI
TPC Controller | TPC UI | ALH | ALH UI
MQ Server | EPICS Bridge | WebSocket + MQTT | Archiver UI
DAQ | MQTT | HTTPD | Web

Vendor-specific protocol

EPICS CA

mod_proxy_ws

CEP

MySQL, MongoDB

….
Bridge: step 2 Integrate EPICS Alarms Into MQ bus

DAQ network	protected network	intranet	external
TPC detector | TPC IOC | TPC UI | TPC UI
Vendor-specific protocol | EPICS CA | ALH | ALH UI
DAQ | TPC Controller | EPICS Bridge | WebSocket + MQTT
MQTT | EPICS CA | WebSocket + MQTT | Archiver UI
MQ Server | EPICS Bridge | DB | Desktop Mobile
MQTT | DAQ | MySQL, MongoDB | …
MQTT | MQ Server | mod_proxy_ws | …
MQTT | MQ Server | CEP | …
MQTT | DAQ | RTS | …
MQTT | EPICS Bridge | CDEV | …
Bridge: step 3

Emulate EPICS IOC with MQ-enabled Service

DAQ network → protected network

- TPC detector
- TPC IOC
- Vendor-specific protocol
- TPC Controller
- MQTT
- MQ Server
- DAQ

protected network → intranet

- WebSocket + MQTT
- mod_proxy_ws
- HTTPD
- CEP
- RTS
- CDEV
- DB
- MySQL, MongoDB
- DAQ network

intranet → external

- TPC UI
- ALH UI
- Archiver UI
- Web Desktop Mobile

Title: CHEP 2016 Conference, San Francisco, October 10-14, 2016
What about other options?

WebPDA is a protocol for accessing real-time data using WebSocket.

Available tools are mostly focused on "EPICS for Web", rarely on service integration which is very important for STAR.

WebPDA
Great idea, but it requires intermediate java application server, not clear how to allow bi-directional talk of non-EPICS services.

EPICS BOY, WebAPI
EPICS-only service, scalability is questionable, as it creates a separate instance of BOY (potentially, spanning to thousands of channels) per connected client.

There is a hint for MQTT Support for CS Studio: https://conference.sns.gov/event/11/session/1/contribution/51
Use-Case: Alarm Handler

Now, all alarms are available via MQ bus

STAR Alarm Handler - EPICS:
- MEDM: Motif Editor and Display Manager
- single instance - local application running at STAR Control Room
- configured by plain text file residing at specific node

Upgrade features:
- web-based interface + local app + phone app
- multiple instances - web and local apps attached to the MQ bus
- configured from database back-end, managed by web front-end

EPICS<->MQTT Bridge Setup:
- propagate Alarms only
- Hierarchy URI: System/Subsystem/module
- bridging mode: EPICS->MQTT and MQTT->EPICS
- message output throttled (per PV) to ~1 msg/sec
- nuisance alarms suppressed at UI level
Alarm Handler UI Conversion

HTML5 stack provides us with the cross-platform UI.

Old UI is being replaced by web-based interface, powered by direct MQTT feed over WebSockets. HTML5-based UI could be deployed as Web, Win/Lin/MacOS/Android/iOS. WebGL could be employed to enable fast widget updates.
Summary & Outlook

- **STAR Meta-data Collection Framework update:**
 - STAR started with MIRA (Messaging Interface and Reliable Architecture) to archive/redirect/filter and act (CEP) upon streaming meta-data collected online. MQ-based service messaging bus provided STAR with stable and scalable solution, and enabled near-real-time view of the experimental status for all collaborators.
 - Proof of principle: EPICS Alarm Handler UI was replaced by a web interface relying on our recently developed EPICS<-->MQTT bridge approach.
 - STAR Online service integration is now greatly improved for DAQ and RTS subsystems, as our Integrated processing of the alarms produced by various STAR subsystems is completed.

- **Future Plans:**
 - Bridge and IOC emulator codes are largely experiment-specific for now, but we are working on a generic implementation to make it fully reusable by the HEP/NP/CA community
 - Bridging and service integration got an interest from collider-accelerator developers, discussions are ongoing
Thank You!

Questions? Comments?