Triggering on leptons and photons on ATLAS

CHEP2016, 10-14 October, San Fransisco Masahiro Tanaka (Tokyo Institute of Technology) on behalf of the ATLAS Collaboration

Barrel 📉

2 station coincidence

low p

3 station coincidence

Endcap

fake µ

low p_⊤

high p

 \sqrt{s} =13 TeV, L dt = 54.8 pb⁻¹

Beam Pipe

- TGC

TGC 1

Run I: $\sqrt{s} = 7-8$ TeV

Run 2: √s = 13 TeV

ATLAS Experiment

Motivation

- Search for new physics like SUSY or Extra Dimensions
- Precise measurement of Standard Model including Higgs boson

Detector

- Inner Tracker
- EM & Hadronic Calorimeter
- Muon Detector

Trigger system

- Hardware based L1 trigger
- Software based High Level Trigger (HLT)
- 40 MHz of initial collisions are decreased to 1 kHz

Triggering on Muons

- RPC and TGC have rapid response
- → Used for LI
- MDT and CSC have high resolution
- → Used for HLT

- 2 station coincidence for lower p_{T} threshold
- 3 station coincidence for higher p_{T} threshold
- Coincidence of Inner TGC and Middle TGC is required
- → Fake muons mainly from beam pipe are reduced with negligible efficiency loss

- Plateau efficiency of LI ~70% in Barrel, ~90% in Endcap
- Plateau efficiency of HLT w.r.t. L1 is ~99%

Triggering on Electrons & Photons

- Information from the EM and Hadronic calorimeter, Inner tracker is used for online reconstruction

- Same procedure for electron and photon trigger
- Sliding-window algorithm is used for cluster reconstruction
- η dependent E_{T} threshold is used
- →Thanks to some new modules precision of ΔE_{T} and granularity of $\Delta \eta$ was improved

 $\Delta E_{\mathrm{T}}: \mathsf{I} \; \mathsf{GeV} \to \mathsf{0.5} \; \mathsf{GeV}$ $\Delta \eta$: 0.4 \rightarrow 0.1

| Better trigger efficiency

Sliding-window algorithm Local energy maxima Trigger towers $(\Delta \eta \times \Delta \phi = 0.1 \times 0.1)$

HLT requirements for Electron

- Requirement for matching between tracks and clusters
- Some fast algorithms are skipped and likelihood based identification and MVA based calibration are introduced
- → Faster and more precise online reconstruction

- Likelihood based identification results in 20% lower rate and 6% more efficiency than cut based one
- 90% efficiency in Barrel region for medium selection
- Excellent Data-MC agreement

HLT requirements for Photon

- No requirement for matching between tracks and clusters
- Simpler algorithm steps and MVA based calibration are introduced
- → Faster and more precise online reconstruction

- Sufficiently low trigger rates for single and di-photon triggers
- Very high plateau efficiency of ~99.5%

Conclusion

Lepton and Photon triggers on ATLAS have high performance, keeping sufficiently low trigger rates and thresholds