The ATLAS Trigger System

Goal: Record 1 collision of interest out of every 40,000 delivered by the LHC every millisecond.

Challenges:
- Enormous data volume
 - 1 collision every 25 ns with ~50 interactions
 - 100,000 s of readout channels
 - ~1.7 MB per physics event
- Diversity of the ATLAS physics program
 - Allocate bandwidth dynamically to accommodate physics priorities
- The LHC operates on its own schedule
 - Provides a variety of operating conditions and collision types
 - High luminosity, low luminosity, proton-proton collisions, heavy-ion collisions
- Planned and unplanned sub-system performance changes
 - New calibrations, interventions, upgrades, failures, etc...

ATLAS must always be ready to record LHC collisions!

Software Release Structure

Release Types
- 20.11: "HLT Online" Reconstructed
- 20.3: "Simulation"
- 20.11.X.Y.Z: "Development" Release
- 20.11.X.Y: "Patch" Release
- 20.11.X.Z: "Base" Release

Trigger Software Validation Cycle

Team:
- Trigger Operation Coordinator
- Trigger Signature Experts
- Menu Expert
- Release Expert
- Software Validation Expert
- Debug Stream & DQ Experts

Tools:
- JIRA
- AMI
- Prosys2
- HLT/ATLAS
- Typical Issues

Enhanced Bias Data

Most of the data processed by the HLT is rejected. Testing the HLT offline requires input data similar to that seen by the HLT online.

Enhanced Bias (EB) datasets:
- Are made using special triggers that accept the main L1 physics items
 - More weight to interesting/rare events
- Provide input data for offline HLT reprocessing
- Validates offline quality and data quality
- Benchmark EB datasets for each flavor of HLC run are taken

Tools:
- Compilation test
- Coordinated from each developer
- Developers must locally validate their software and menu updates
- Online integration

Software Validation Expert

- New software tags collected, release build and run nightly test
 - 12 hours
- Release deployed to the grid
 - 5 hours
- Investigate and resolve bugs, create new tags
- Collect, create and assign bugs

Jet Expert: Examine and validate performance

Electron Expert: Examine and validate performance

Muon Expert: Examine and validate performance

Subjects:
- Production of reprocessing performance metrics:
 - Average memory usage
 - Individual algorithm performance analysis
 - Estimated algorithm rates
 - Physics performance metrics
 - Reconstructed observable distributions compared to reference
 - Trigger signature efficiencies
 - ~1 hour

The status of the cycle is summarized in the weekly trigger meeting.

Outlook

Upcoming improvements include:
- Multi-core grid processing for faster reprocessing jobs
- Streamlining the overall ATLAS data reconstruction process

Authors:
Robert Keyes, Tamara Vazquez Schröder, Simon George, on behalf of the ATLAS Collaboration

Acknowledgments:
Thanks to the Natural Sciences and Engineering Research Council, Canada, for funding our efforts

Development, Validation and Integration of the ATLAS Trigger System Software in Run 2