
1. Introduction

The Trigger and Data Acquisition[1](TDAQ) system of the ATLAS[2] detector at the Large Hadron

Collider (LHC) at CERN is composed of a large number of distributed hardware and software

components (about 3000 machines and more than 15000 concurrent processes at the end of LHC’s

Run I) which provide the data-taking functionality of the overall system.

During routine ATLAS operations many applications must be started and stopped within a small

time window. The Resource Manager is designed to handle of order 30k requests within a few

seconds from O(1k) clients in the data acquisition system via a custom API. A GUI is also available

for use by experts to view and update resources as needed.

2. The Resource Manager - Architecture

3. The Resource Manager Context 4. The Resource Manager Use Cases

5. The Resource Manager Upgrades 6. Conclusions

References
1. The ATLAS Collaboration, 2002, ATLAS high-level trigger, data-acquisition and controls: Technical Design

Report

2. The ATLAS Collaboration, 2008, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum.

3.Common Object Request Broker Architecture home www.corba.org

4.Leahu, Marius Constantin; Dobson, Marc; Avolio, Giuseppe, "Access Control Design and Implementations in

the ATLAS Experiment", IEEE Transactions on Nuclear Science, vol. 55, issue 1, pp. 386-391 2008

5.Lehmann Miotto G et al, “Configuration and control of the ATLAS trigger and data acquisition”, Nuclear

Instruments and Methods in Physics Research Section A, Volume 623, Issue 1, p. 549-551., 11/2010

6.Avolio, Giuseppe; Dobson, Mark; Miotto, Giovanna Lehmann, Wiesmann, Matthias, "The Process Manager in

the ATLAS DAQ System", IEEE Transactions on Nuclear Science, vol. 55, issue 1, pp. 399-404 2008

The RM server is essential to be able to control RM resource

usage while the TDAQ system is running. The server should

therefore be robust and handle all failures in a graceful way

including restarts in case of a crash and recovery of data from a

backup. Data backups consist of a base file storing all RM DDB

information and a logout file storing any changes on top of the

base file data. The base file itself is updated periodically. The

logout file is immediately updated when a corresponding action

is completed successfully. When the RM server is started and

restored from backup the base file is used to recover the bulk of

the data and then the remaining actions are recovered from the

logout file by parsing records.

The overall architecture of the RM is presented in the figure below. The RM component is essentially divided into RM

server and client parts. The RM client performs requests to the RM server using CORBA based Communication[3].

The RM client uses access management[4] for some types of action before issuing requests in order to check if

such actions are permitted for user. Clients can ask for allocation or release resources, get information about

allocated resources and update configuration data that is stored in the RM server dynamic data base (DDB). RM

clients use a configuration data base[5] in order to load objects that correspond to resources and their

associations.

All the available resources that are used by the RM and their associations to software processes are

described in the configuration database. You can see simplified diagram of corresponding classes in the

figure below. There are two types of RM resources in the ATLAS TDAQ configuration database. An RM

Software Resource is used when only limited copies of some software may run in the ATLAS TDAQ system

on any host. An RM Hardware Resource is used when only one application can start on the same host. RM

Hardware Resources are associated with program which has no association with computer. This greatly

decreases the number of resources that should be stored in the database. The RM creates whatever

hardware resources are needed on the fly when an application starts

Most ATLAS TDAQ processes are started using the

Process Manager[6] (PMG). The PMG is the main

user of RM client functionality, sending requests to

the RM server via the client API to allocate

resources for applications to be started. Once a

task is complete requests are also sent to the RM

server to free any allocated resources. The PMG is

designed to avoid situations where applications

consuming resources crash and therefore do not

free what they have been allocated.

An example of the use of RM software resources is the Integrated Graphical User Interface (IGUI). The IGUI

can run in control and display mode as you can see in the picture marked by the red ellipse. Only one copy of

the IGUI can run with control rights and a limited number of IGUI instances can run in display mode. Two

corresponding resources are defined in the configuration database. The IGUI uses the RM client java

interface to request resources.

During the LHC's Long Shutdown period, the Resource Manager's requirements have been reviewed in light of

the experience gained during the LHC's Run I. As a consequence, the Resource Manager has undergone a full

re-design and re-implementation cycle with the result of a reduction of the code base by 40% with respect to the

previous implementation thus leading to a more maintainable component.

RM Hardware resources are most

widely used in the ATLAS Readout

System (ROS). The read-out cards

(RobinNP) can not be shared. Only

one RobinNP controller can start on

the host PC. Just one hardware

resource is stored in configuration

database. The PMG requests

controller resources before starting it

on a host using the host identifier as

one of the request parameters. The

RM server checks if the corresponding

resource is already allocated and

gives permission to proceed if free.

The redesign of the RM Server did not lead to changes in the RM Client. The only additions to the client were

some python functions to facilitate more easy access to resource information.

The Resource Manager Server runs as a single process and

robustly controls all RM resources across the TDAQ system

whenever applications are running.

Resource Manager server re-design and re-implementation

made the component more maintainable, which is important

for long-term support.

New features available in C++11 helped to significantly

simplify RM server re-implementation.

The Resource Manager the ATLAS Trigger and

Data Acquisition System

I ALEKSANDROV
a
, G AVOLIO

b
, G LEHMANN MIOTTO

b
, I SOLOVIEV

d

on behalf of the ATLAS TDAQ Collaboration

a: Joint Inst. for Nuclear Research – JINR (RU), b: CERN, d: University of California Irvine (US)

The Resource Manager (RM) is one of the core components of the ATLAS online Data Acquisition

system. The Resource Manager marshals the right for applications to access resources which may

exist in multiple but limited copies in order to avoid conflicts due to program faults or operator errors.

The access to resources is managed in a manner similar to what a lock manager would do in other

software systems. The Resource Manager is queried about the availability of resources every time

any application needs to be started.

Application

Computer

Resource

Software Resource Hardware Resource

Program

Runs on

Needs

Configuration DB classes that are used in the RM

Use

CORBA based

 communication

 RM client

RM server

General architecture

 Backup Data

configuration

data base

access management

The RM server runs as a single instance convering the entire TDAQ system. The RM server is a passive component

and reacts only to client requests. It consists of an RM DDB and wrapper, which provides multi-threaded processing

of DB requests as well as support for backups. The RM DDB keeps all data concerning allocated resources and

corresponding allocation parameters like client, application, program identifier etc.

The RM server is implemented in C++. The client is implemented in C++ and in java. Java is used mostly in

different GUI calls. A python implementation of the RM client functionality was recently developed for monitoring

resource states.

The RM DDB implementation contained some classes

using multiple references in order to minimize memory

use and provide fast response to any request. Backup

support was based on usage of a configuration database

backup facility that stored data in XML format. The usage

of new features available in the C++11 standard, such as

boost multi-containers, made it possible to build a more

simple composite key based data store while still

providing the needed functionality. The use of boost

archiving features also helped to simplify the backup

facility.

The RM should have minimal influence on application start time. Controller initialization tests for different

numbers of applications per node were performed with and without the RM running. The plot shows that there is

no overhead from the inclusion of the resource manager.

http://www.corba.org/

