
The new inter process communication
middle-ware for the

ATLAS Trigger and Data Acquisition system
Serguei Kolos, University of California Irvine, USA

Reiner Hauser, Michigan State University, USA

on behalf of the ATLAS TDAQ Collaboration

1. The ATLAS TDAQ Online Software

Online Software

CORBA is an open standard for distributed object computing, which was proposed in 1991 by the Object
Management Group (OMG). This was the first attempt to provide a broad high-level standard for information
exchange in a distributed software environment, which was quite successful and played an important role in the
overall evolution of distributed software systems.
However many key features of the CORBA standard have a number of built-in drawbacks, which have
become more and more prominent in recent years, making CORBA less attractive for modern software
development.

2. CORBA in the modern software world

Trigger and DAQ system

H
istogram

s

3. The modern trends in the IPC software market

5. ØMQ Performance and Scalability

The CORBA standard has a long and successful history, but
now the interest of the development community has shifted
away from universal frameworks to a flexible combination of
small independent libraries.

Using this approach for distributed systems implementation
gives a number of advantages compared with the utilization of
a traditional high-level object-oriented framework:

• Performance – the network transport library provides a
very low and efficient interface

• Simplicity – the API is very simple yet powerful. With few
lines of code one can implement a complex distributed
system.

• Flexibility – one can use only functionality which is
required by the specific application thus avoiding
unnecessary overhead.

We are now considering ØMQ as the main candidate for the
replacement of CORBA within the ATLAS TDAQ Online
Software.

6. Conclusion

ØMQ is a low-level C-style library for reading/writing something which looks like plain
old sockets. All state management and error handling complexities are hidden.
ØMQ supports most of the widely used Programming Languages

Bash, C, C++, C#, Common Lisp, D, Erlang, Go, Haskell, Java, Lua, node.js, Perl, PHP, Python,
Racket, Ruby, Tcl, …

Development & Support model
• Large and active developer community
• Open Source software model

4. Using ZeroMQ for Network Transport

The ATLAS Trigger & Data Acquisition
(TDAQ) project started almost twenty years
ago with the aim of providing a scalable
distributed data collection system for the
experiment. While the software dealing with
physics data flow was implemented by directly
using low-level communication protocols, like
TCP and UDP, the control and monitoring
infrastructure services for the TDAQ system
were implemented on top of the CORBA
communication middle-ware.

Fast evolution of computing systems and network technologies brought into life a huge
number of software communication systems. They are varying in many key aspects, including
communication model, implementation level, supported programming languages, communication
protocols and so on. Some of those systems are applicable only for specific domains while others are
general purpose systems, which can be used for implementing any possible type of communication.

There are three main aspects involved in distributed system development and the modern
tendency is to handle them independently using different software:
• Marshalling libraries:

• Json, MessagePack, Google Protobuf, etc.
• Communication libraries:

• Boost ASIO, ZeroMQ, NanoMsg, etc.
• Thread Management:

• Boost Thread, C++11 STD library, Intel Thread Building
Blocks library, etc.

The absence of a language neutral interface
description Is compensated by modern
improvements in programming languages
like for example C++11.

The ATLAS TDAQ Online Software places very demanding requirements on the Inter-
Process Communication (IPC) system:
• The Online Software has to control and monitor the TDAQ system, which is composed of O(10)K

processes distributed over O(1)K computers, connected via high-speed LAN
• All components of the TDAQ system have to be operated with quasi-realtime performance as

this is crucial for maximizing the efficiency of the experiment

The first incarnation of the Online System, which was born in 1998, is based on the CORBA
communication middleware. Two CORBA implementations have been used: JacORB for Java
and omniORB for C++. They both satisfied the performance and scalability requirements and
simplified development and maintenance of the Online Software.

However after more than 10 years successful experience with the CORBA brokers, we have
decided the time is right to explore if there are new products on the IPC software market,
which can improve our system performance and maintainability.

R
aw

 E
vents

M
essages

C
om

m
an

ds

S
tatus D

ata

• CORBA defines the PL-neutral Interface Definition Language for
communication protocol description. The code for a specific PL is
generated from such a description.

Mapping of IDL to different PLs (e.g. C++ and Java) is old-
fashioned and inefficient as it does not support zero-copy
data transfer.

• CORBA provides a high-level object-oriented API which hides all
aspects of the communication implementation.

This simplifies development but adds noticeable overhead
and significantly reduces flexibility.

• CORBA standardizes an API for object creation, registration, location
and activation, thus assuring source code compatibility between
different CORBA implementations.

This model is quite complex and provides a lot of features,
which are rarely or never used. In practice the source code
compatibility works only for Java, while for C++ some more
or less complex changes are always required.

• CORBA compliant brokers can freely interoperate with each other.
All CORBA implementations use the same data exchange
protocol, which has some overhead in terms of both data
size and processing time, mostly due to data alignment
requirements of the CORBA network exchange protocol.

• Supports widely used programming languages, like C, C++ and
Java.

While the language mapping standards have been issued
for some of the new popular PLs, most of them have never
been implemented due to their complexity.

Data
Marshalling

Network
Transport

Thread
Management

IDL

Client Server

CORBA API

Taking into account the ATLAS TDAQ Online Software requirements, using a combination
of low-level libraries for IPC implementation is a very attractive option.

Socket
Handling

Thread
Management

Client Server

Data
Marshalling

The simplest REQuest-REPly
pattern

main () { Server
zmq::context_t context();
zmq::socket_t socket(context, ZMQ_REP);
socket.bind (tcp://*:5555");
while(1) {

zmq::message_t request;
socket.recv (request);
zmq::message_t reply;
socket.send (reply);

}
}

main () { Client
zmq::context_t context();
zmq::socket_t socket(context, ZMQ_REQ);
socket.connect(tcp://localhost:5555");
while(1) {

zmq::message_t request;
socket.send (request);
zmq::message_t reply;
socket.recv (&reply);

}
}

ØMQ provides a number of advanced communication patterns out of the box

0

2

4

6

8

10

12

300 clients 600 clients 900 clients 1100 clients

Average request time (ms)

omniORB ICE ZeroMQ

0

2

4

6

8

10

12

300 600 900 1100

Server CPU time per request (us)

omniORB ICE ZeroMQ

class MyServer : public tdaq::rpc::Server {
public:
MyServer() : tdaq::rpc::Server(zmq::socket_type::rep) {

add_method("echo", &MyServer::echo, this, std::placeholders::_1);
add_method("add", &MyServer::add, this, std::placeholders::_1, std::placeholders::_2);

}

std::string echo(const std::string& msg) {
return "This is MyServer::echo, returning: " + msg;

}

int add(int x1, int x2) {
return x1 + x2;

}
};

To understand the performance and scalability of ØMQ several tests have been performed.
For comparison we have been using the omniORB CORBA broker and the ICE framework provided by the ZeroC
company. The latter one is a modern CORBA-like object-oriented RPC framework, which is free of many CORBA
drawbacks, so it’s an interesting candidate for performance comparison.

The hardware configuration used in testing:
Servers were running on the same computer: Intel Xeon E5645 4 cores 2.4 GHz, 24 GB RAM, 10Gb Ethernet
Clients were equally distributed over 100 computers: Intel Xeon E5420 2.5 GHz, 16 GB RAM, 10Gb Ethernet
All servers used the following configuration: 1 I/O thread, 20 worker threads
Clients send 1-byte string to the server and receive the same string back as fast as they can

Test results
The plots on the right present the test results. The first one shows average time for one request for all three systems and
different number of concurrent clients. The second plot shows the number of CPU cycles the server spent to process a
single request. The plots show that all systems have excellent scalability and offer very good performance. ØMQ spends a
bit more real time for a single request, probably because the way in which requests are handled on the client side is
different compared with the other two systems.
ØMQ does not write data to the socket from the user thread, but just places the data into a queue which is handled by another dedicated
thread. This thread reads the data from this queue and sends it to the socket.
At the same time ØMQ shows significantly smaller CPU usage at the server side due to a very
small overhead compared with the complex frameworks implemented by ICE and omniORB.

	Slide Number 1

