

A PCIe based readout for current and future ATLAS Pixel modules Timon Heim - Lawrence Berkeley National Lab

Introduction

The ATLAS Pixel detector uses custom ASICs to amplify and digitise the signals of the 92 million pixels that cover 1.75 m² of active area. To control and read out these ASICs custom readout electronics, typically utilising FPGAs, are used. The latest generation of readout chips, the FE-I4 (160Mb/s), has been integrated into YARR.

Readout requirements:

- High bandwidth & high channel-count serial communication
- Execution of complex calibration loops
- Local processing of calibration data

Concept

Traditional concept

- Low bandwidth link between host computer and Read-Out-Driver
- Requires in-FPGA preprocessing and lossy compression (histograms)
- Due to concept very complex firmware and software → high entry level for new developers
- Requires custom hardware

YARR concept

- Use high-speed link (PCIe) to transfer unprocessed data
- Perform all processing in software
- Lower entry level for new developers
- Can utilise COTS hardware

Smart software, simple firmware!

- COTS hardware with Xilinx Spartan 6 FPGA
- → cheap and available
- FMC port used for custom detector interface
- Buffer data in DRAM to achieve higher transfer speeds
- Keep it simple!

Scan Loop

Why loops?

- Inject test charge repeatedly to test response of pixels
- Cannot test all pixels at once: need to loop over portions of the pixel matrix
- Many scans involve looping over parameter range

Scan Engine

- Loops define actions performed on the Pixel module
- Nest loop actions in modular structure
- → High flexibility in constructing scans Scan engine executes nested loops

Do one thing and do it well

- Use search algorithms to speed up calibration and not brute force
- Search algorithms require input from higher analysis
- Don't perform analysis inside of scan loop, but rather feature interface for higher analysis to give feedback

Data Processing

Compete with FPGAs

- Convert binary data format from Pixel modules into standard data structures
- FPGAs excel at this job, but would need more bandwidth between FPGA and CPU
- Conversion → Perform same task many times on small data segments
- → Utilise modern multi core CPU architecture and parallelise data processing

Effect of parallel processing

- Inter-thread communication lowers performance → Contain all necessary information in data containers
- This enables a processing step to be performed anywhere easily, e.g. FPGA, GPU or on a different computer

Split up data by module e.g. 3, as shown here

Histogramming

Scan Control

CPU

Scan Control

Scan Engine

Why histograms?

- Lossy data compression → scan specific
- Plethora of memory in modern computers → not confined to certain number of histograms

Histogramming in DRAM

- Histogramming consists of many readincrement-write operations at random addresses → Usually done in SRAM
- Non-consecutive address switching slow in DRAM → Is it fast enough? Yes!

Analysis

Example: FE-I4 Threshold Scan

Ø(10k-100k) times

Calibration

- Measure threshold
- Feedback to scan engine (too high/low)
- Analysis only measures threshold and does not adjust!

Dataflow Raw Data

Event Container

Event Container

PLDA

XpressK7

Event Container

Histogram Histogram Histogram Result Result Result

UNIVERSITY OF CALIFORNIA

In the future

New detector → New readout

- New detector modules will need readout links of up to 5Gbit/s
- → Move to Xilinx Series 7 FPGAs to enable readout at 5Gbit/s
- → PCIe 3.0 gives 16Gbit/s per lane with up to 16 lanes
- Is it still possible to perform all processing in software?

Smart software → Hardware agnostic?

- Traditionally different hardware solutions have been developed for lab testing and detector operation → Community and expertise split between two systems, creates manpower issues!
- Deploy YARR software for already existing Pixel detector hardware to prove that concept is hardware agnostic

....

••••

••••

