
Wishbone Buse

GN4124 Core DMA Controller

TxCore

DDR3
Controller

DMA Wishbone Bus

FE

Trigger
Unit

Encoder &
Serialiser

RxCore

Gatherer
Decoder &
Deserialiser

DDR3

GN4124

RxBridge

init()

execPart1()

execPart2()

end()

init()

execPart1()

init()

execPart1()

execPart2()

end()

execPart2()

end()

Loop 1 Loop 2 Loop 3

has inner

has inner

done

done

done

!(has inner)
!done

!done!done

Computer

PCIe card

FE

CPU

Scan Control

Histogrammer

Scan Engine

FPGA

Aggregator

ROD
FPGA/PPC

Histo-
grammer

Scan
EngineFE

Computer

CPU

Scan Control

CHEP 2016 - San Francisco

Scan Loop Data Processing Histogramming Analysis

Timon Heim - Lawrence Berkeley National Lab
A PCIe based readout for current and future ATLAS Pixel modules

YARR

Introduction

In the future

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400

Tr
an

sf
er

 s
pe

ed
 [M

B/
s]

Package size [kB]

DMA Transfer Benchmark

DMA WRITE (CPU -> FPGA)
DMA READ (FPGA->CPU)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7

T
im

e
 [
m

s]

Number of Threads

Data

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80

R
ow

Column

ThresholdMap

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Th
re

sh
ol

d
[V

ca
l]

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

O
cc

up
an

cy

Vcal

Scurve-18760

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

N
um

be
r o

f P
ix

el
s

Threshold [Vcal]

ThresholdDist

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100

N
um

be
r o

f P
ix

el
s

Threshold [Vcal]

ThresholdDist

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 5 10 15 20 25 30

T
im

e
 p

e
r

H
it

[µ
s]

Number of Threads

Intel Core i7 2.7GHz (4 cores), 2xDDR3-1600
Intel Core i5 3.4GHz (4 cores), 2xDDR3-1333

AMD Opteron 3.3GHz (12 cores), 4xDDR3-1600

Concept Hardware & Firmware

UNIVERSITY OF
CALIFORNIA

Email: theim@lbl.gov

The ATLAS Pixel detector uses
custom ASICs to amplify and
digitise the signals of the 92 million
pixels that cover 1.75 m2 of active
area. To control and read out these
ASICs custom readout electronics,
typically utilising FPGAs, are used.
The latest generation of readout
chips, the FE-I4 (160Mb/s), has
been integrated into YARR.

Readout requirements:
• High bandwidth & high

channel-count serial
communication

• Execution of complex
calibration loops

• Local processing of
calibration data

Traditional concept
• Low bandwidth link between host

computer and Read-Out-Driver
• Requires in-FPGA preprocessing

and lossy compression (histograms)
• Due to concept very complex

firmware and software → high entry
level for new developers

• Requires custom hardware

YARR concept
• Use high-speed link (PCIe) to

transfer unprocessed data
• Perform all processing in software
• Lower entry level for new

developers
• Can utilise COTS hardware

Smart software, simple firmware!

• COTS hardware with Xilinx
Spartan 6 FPGA 
→ cheap and available

• FMC port used for custom
detector interface

• Buffer data in DRAM to
achieve higher transfer
speeds

• Keep it simple!

SPEC

Why loops?
• Inject test charge repeatedly to test

response of pixels
• Cannot test all pixels at once: need to

loop over portions of the pixel matrix
• Many scans involve looping over

parameter range

Compete with FPGAs
• Convert binary data format from Pixel

modules into standard data structures
• FPGAs excel at this job, but would need

more bandwidth between FPGA and
CPU

• Conversion → Perform same task many
times on small data segments
→ Utilise modern multi core CPU

architecture and parallelise data
processing

Scan Engine
• Loops define actions performed on the

Pixel module
• Nest loop actions in modular structure
→ High flexibility in constructing scans

• Scan engine executes nested loops

Do one thing and do it well
• Use search algorithms to speed up

calibration and not brute force
• Search algorithms require input from

higher analysis
• Don’t perform analysis inside of scan

loop, but rather feature interface for
higher analysis to give feedback

4-core Intel i5

Effect of parallel processing
• Inter-thread communication lowers

performance → Contain all necessary
information in data containers

• This enables a processing step to be
performed anywhere easily, e.g. FPGA,
GPU or on a different computer

Histogramming in DRAM
• Histogramming consists of many read-

increment-write operations at random
addresses → Usually done in SRAM

• Non-consecutive address switching slow
in DRAM → Is it fast enough? Yes!

Example: FE-I4 Threshold Scan
𝒪(10k-100k) times

S-curve fit

Parameter range

Calibration
• Measure threshold
• Feedback to scan engine (too high/low)
• Analysis only measures threshold and

does not adjust!

before after

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80

R
ow

Column

OccupancyMap

 0

 20

 40

 60

 80

 100

H
its

Why histograms?
• Lossy data compression → scan specific
• Plethora of memory in modern

computers → not confined to certain
number of histograms

Event Container

Event Container

Event Container

Histogram

Histogram

Histogram

Result

Result

ResultRaw Data

Pr
oc

es
s  

in
pa

ral
lel

Split up data by module  
e.g. 3, as shown here

Fe
ed

ba
ck

Fe
ed

ba
ck

New detector → New readout
• New detector modules will need readout links of up to 5Gbit/s  
→ Move to Xilinx Series 7 FPGAs to enable readout at 5Gbit/s  
→ PCIe 3.0 gives 16Gbit/s per lane with up to 16 lanes

• Is it still possible to perform all processing in software?
Smart software → Hardware agnostic?
• Traditionally different hardware solutions have been developed for lab

testing and detector operation → Community and expertise split between
two systems, creates manpower issues!

• Deploy YARR software for already existing Pixel detector hardware to
prove that concept is hardware agnostic

One FE-I4  
= 16 MB/s

PLDA
XpressK7

 Dataflow

data per thread
= const

On
e t

hr
ea

d p
er

mod

ule

Yet Another Rapid Readout

PCIe

Threshold Distribution Threshold Distribution

Occupancy histogram of one one mask stage

S-curve of single pixel

Threshold Map

