Developing the Traceability Model to meet the Requirements of an Evolving Distributed Computing Infrastructure

Ian Collier, STFC, Vincent Brillault, CERN, Brian Bockelmann, University of Nebraska
ian.collier@stfc.ac.uk

Introduction

• Security incidents are an operational reality in distributed infrastructure.
• When things go wrong we need, at a minimum, to know:
 • WHO did WHAT, WHEN they did it, and WHERE they did it.
• This allows us to contain the impact of incidents, preserve reputations and ensure that resources are available for their intended purposes.
• As our infrastructure evolves we should ensure we make the best use of all available technologies to maintain the traceability we depend upon.

Current GLExec model

• GLExec manages authentication, authorization & isolation and logging
• UID changes can confuse batch systems:
 • Jobs of the same user might not be isolated, esp. for (shared) storage
 • Job tracking could get confused: payload running as a separate UID
• Exposes the final user to the site, allowing direct trust:
 • But rely on the VO to provide a proxy matching the payload!
• Cannot provide isolation without full authentication
• Complex to deploy & operate – adoption by VOs remains low

Separating Isolation & Traceability:

• Containers (namespaces) can provide isolation between processes (jobs):
 • Unprivileged namespaces allow users to create their own containers:
 • No root privilege required, no SUID required
 • Users (and jobs) are isolated: one cannot another’s container
 • No need for a trusted gatekeeper within the site:
 • We already trust VO to provide matching of users and payload
 • VOs can produce enough audit logs for traceability
• Isolation has no inherent dependency on traceability
• Traceability does depend on isolation, but can be layered:
 • Batch systems isolate and track VO jobs
 • VO jobs can isolate and track VO jobs themselves

Potential solution: Singularity

• Developed for HPC: http://singularity.lbl.gov/
• Unprivileged/non-daemonized tool creating containers:
 • Can provide complete isolation between the pilot and the payload
 • Can be used with CVMFS to provide a CernVM environment
 • Can mount over specific folders, e.g. job folders
• Completely unprivileged with upstream kernel:
 • No installation needed at sites, could be in CVMFS
• In RedHat/CentOS/SL 7.x requires root SUID:
 • Security assessment ongoing
 • Could offer a transition method - deployment more challenging

VO role in Incident Response

• WLCG VOs already log job workflows to support debugging & workload management.
• Initial assessment shows that:
 • Enough data is stored to find the user/payload linked to an incident
 • Querying this data is possible but requires time and effort
• Better tools to aggregate & search workflow logs needed
• Traceability service challenges needed to test and certify VO capabilities
• Emergency credential suspension requires VOs
 • Automatic suspension feeds could be consumed by VOs
 • Sites can always suspend the entire VO as a last resort.

Conclusions & Future work

• WLCG Traceability & Isolation Working Group will continue:
 • Investigating & testing possible isolation solutions
 • Working with VOs to develop incident response capability
• VOs may require new infrastructure to better support traceability
• New security challenges to be designed and tested