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Introduction

Distributed Data Management (DDM) involves a heterogeneous infrastructure

with a highly dynamic state
= Data management is involved at all layers: software, computing, storage, network
= Difficult to get reliable and consistent instrumentation in a distributed system
Quasi-static, reactive way of system operation
= For important actions a human is involved — "signing-off" of decisions and tasks
= Algorithms and parameters tuned based on human experience

System works, but high potential for improvements

= Data rebalancing e.g., disk space doesn't match CPU, tape migration, ...
= Hot replication e.g., create additional copies of frequently used data, ...
= Placement selection e.g., data distribution based on resource pledges, ...

= Source selection e.g., use which replica if multiple ones are available, ...

= Robustness e.g., automatically reschedule tasks and transfers, ...



DDM Network Metrics

Centrally collect and make available DDM metrics to help with those problems

Static link metrics
= Source and destination site
= Closeness as defined by ATLAS Distributed Computing Operations, updated monthly

Dynamic link metrics

= Packetloss as a percentage perfSONAR]

= Latency as median one-way link delay perfSONAR]

= Percentile File Throughput in mbps [FTS, Dashboard, FAX]
= Link Throughput in mbps perfSONAR]

= Queued files per activity [Rucio]

= Done files per activity in the last n hours [Rucio]
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First objective: Heavy lon placement

minimise job waiting time t[activated - defined]
subject  limited number of potential sites with himem queues
existing data across all sites
available free space at potential destination sites
DDM network metrics latency, packetloss, throughput, closeness
all involved queue lengths prodsys, panda, rucio
learn for all heavy ion data subject to given constraints — classify destination sites

Place or rebalance heavy ion data as close as possible to potential scheduling targets
Constrained learning function with all input and output metrics available
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Time to complete transfer estimator

Close in the geographical sense is misleading, instead train an estimator

= Learn input DDM network metrics, including categorized variates
= Model input (bytes, source, destination, activity)
= Model output file transfer duration I ( —
Data Consolidation, TO Export,
X ( L Production Input, etc... }
. . full workflow, including queues,
Method uses decision trees | e isen ot

= Effective and efficient tool for classification and regression of large datasets

= Finds nonlinear relationships between variates
Cross-validation against overfitting

= Many random samples generated, each with 80% training, 20% test split

= Each sample fitted with separate tree, in our first evaluation 1 month of data used
Random forest regressor of many trees

= Final prediction which is robust to outliers and noise (Breiman, 2001)
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Time to complete transfer estimator

TTC for all activities (CERN-PROD -> BNL-ATLAS):
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Time to complete transfer estimator

CERN-PROD -> BNL-ATLAS: Model Performance by Activity
Express:

Te%%gata mean = 12.58 min., RMSE = 40.41 min.

Data Consolidation:
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Time to complete transfer estimator

CERN-PROD -> SARA-MATRIX: Model Performance by Activity

Express: RMSE = 1.80 min.
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Production Output: RMSE = 1.60 min.
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Time to complete transfer estimator

CERN-PROD->BNL-ATLAS link

Production Input Data Consolidation

TO Export
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So far we are happy with the first results of the estimator
= Improvements can now occur in parallel to the bigger data placement activity
= Understand occasional multimodality of model output w.r.t. different activities
= Try different regression models (boosted decision trees, networks, SVM)
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[0 HIl experimental data

B HI MC data

HIMEM Sites

Heavy lon data collections on sites
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Back to Heavy lon data placement
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Jobs spend a lot of time waiting for input data — wait time distribution with long tails

Many of the datasets only at CERN — results in transfer queuing delays
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= With a distance estimator we can quantify data placement improvements

= But we cannot overfill sites — queued files and space important for feedback loop
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# Jobs

Back to Heavy lon data placement

Panda Jobs for Heavy lon MC Data Jul 2016

Panda Jobs for Heavy lon Experimental Data since Jan 2015
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Many of the datasets only at CERN — results in transfer queuing delays

Jobs spend a lot of time waiting for input data — wait time distribution with long tails
= With a distance estimator we can quantify data placement improvements
= But we cannot overfill sites — queued files and space important for feedback loop
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Back to Heavy lon data placement
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Many of the datasets only at CERN — results in transfer gueuing delays

Jobs spend a lot of time waiting for input data — wait time distribution with long tails
= With a distance estimator we can quantify data placement improvements
= But we cannot overfill sites — queued files and space important for feedback loop
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Summary

DDM Network metrics centrally stored and made available

Estimator for time-to-complete of transfers using machine learning methods
= Good agreement but need to better understand model output
= Point improvements can be made in parallel, e.g., other learning methods, ...

Heavy lon data placement selected as first constrained focus study
= Demonstrate feasibility of machine learning methods for automated improvements
= Have a full chain and workflow in place
= Eventually, open up automatic rebalancing for all types of data

In the future...

= For full studies, we will require the move from scikit-learn to MLLib/Spark
= Incremental steps in agreement with our human operators



