

22nd International Conference on Computing in High Energy and Nuclear Physics, Hosted by SLAC and LBNL, Fall 2016

DIRAC Universal Pilots

Federico Stagni

Cinzia Luzzi Andrew McNab Wojciech Jan Krzemien

On behalf of the DIRAC consortium

Pilots: not a new concept

Agents form an overlay layer hiding the underlying diversity

20% of data processing happens today on non grid resources

Integration of non Grid resources in ATLAS is a big investment with a big return

Automation is the key

It seems like the grid is not anymore "The Grid"

In the meantime...

Heterogeneity is the norm

(WLCG, CREAM, ARC, HTCondor, HLT, HPC, Opportunistic, Volunteer, Virtual Machines, clouds, vac, BOINC, containers, Docker...)

DIRAC approach

Pilots are the "federators"

Send it

as a "pilot job"

Or just Run it!

e.g. as part of the contextualization of a (V)M

OR

"Make a machine a pilot machine, and you are done"

Today's pilots

10 years later, pilots are still in use, and keep being developed

~2 years ago <u>DIRAC</u> introduced the so-called "<u>Pilots 2.0</u>"

- A pilot 2.0 is a standalone python script
- Common to all communities using DIRAC
- Can be run on every computing resource

Anatomy

Anatomy

1. Start it

Send it here High Throughput Computing Gite

- The bootstrap issue (pilot wrappers):
 - A pilot, on a VM, starts blind (in the vacuum). Need to supply info:
 - Where to get the pilot script(s)
 - Names: Site, CE, Queue
 - Solve the "difficult" case, generically
- Simple pilot wrappers

2. Configure it

Self-discovering WN capabilities

- Including CPU power
 - Using DB12
 - And #processors
 - MJF supported
- And memory

→ more details

Benchmarking worker nodes using LHCb productions jobs and comparing with HEP-Spec06

Commands list configurable:

With REST interface on top of DIRAC Configuration System

- By type of "Grid"
 - i.e. some commands may be needed only for volunteer computing resources
- By setup (e.g. production, test, ...)

3. Get the jobs

- A DIRAC client is installed
- By default a "JobAgent" is used to match the capabilities of the WN with the requirements of the waiting jobs.
- Support for MultiProcessor jobs:
 - Pilots advertise multi-processor payload slots
 - Multi-processor payloads matched
 - No mix/backfilling allowed yet

4. Monitor it

- Pilot logging:
 - A list of messages like
 - "I've booted up" ...
 - "I found the DIRAC pilot ok" ...
 - "I'm about to shutdown"...
 - Uses MQ systems (stomp)
- Pilot self-upload their own logs before shutting down
 - Needs reliable/fast SE

Summary

- DIRAC Pilots are the real federator of "any" computing resource
- Used by all the DIRAC communities in every DIRAC installation
 - Single or multi-VO
- Already VERY flexible: highly configurable, easy to extend
 - E.g. LHCb uses extended the command to install LHCbDIRAC
- Actively developed

Questions/comments

WMS overview

WMS overview

Pilot based Workload Management

- High user job efficiency
- Suitable for usage with heterogeneous resources
- Allowing application of community policies