DIRAC in Large Particle Physics Experiments

Federico Stagni
Andrei Tsaregorodtsev, André Sailer
Luisa Arrabito, Xiaomei Zhang, Takanori Hara
The DIRAC Interware

- A software framework for distributed computing
- A complete solution to one (or more) user community
- Builds a layer between users and resources
Covered in this presentation:

And many others

just some examples:
An open source project

● Developed by communities, for communities
 ○ Open source (GPL3), GitHub hosted, python 2.7
 ○ Publicly documented, active assistance forum, yearly users workshops, open developers meetings
 ○ 5 FTE as core developers, a dozen contributing developers

● The DIRAC consortium as representing body
 ○ CERN, CNRS (Marseille, Montpellier), UB, KEK, IHEP as members
Accommodating different requirements: Developed with extensibility in mind

“Horizontal” extensibility
- For specific requirements

DIRAC
WebAppDIRAC
RESTDIRAC
VMDIRAC
COMDIRAC
Exterals

DIRAC
Core project

Pilot

Each project is independently versioned
A DIRAC release is composed by all the projects (strong dependency)

“Vertical” extensibility
- Community driven

DIRAC
VO
WebAppDIRAC
- DIRAC first developers, main maintainers
- Uses DIRAC for all distributed computing needs
- Computing resources:
 - Grid: CREAM, ARC, HTCondorCE
 - Private Clusters: SSH/GSISSH tunnels
 - Batch: LSF, SGE, Condor, Torque
 - Clouds: LHCbDIRAC pilots spawned by vcycle
 - Vac, opportunistic (BOINC, HLT, HPC) with LHCbDIRAC pilots
 - Req: CVMFS
- Storage, DataManagement:
 - SRM (gfal, gfal2), DIP, FTS3
- Catalogs:
 - DFC (DIRAC File Catalog)
 - Bookkeeping (data provenance)
- Extended:
 - LHCbDIRAC - most of systems
 - Massive data production and manipulation with chained “transformations”
 - LHCbPilot
 - LHCbWebAppDIRAC
- End Users interface with LHCbDIRAC client or with Ganga

→ more details
Monitoring performance of a highly distributed and complex computing infrastructure in LHCb

→ more details
LHCbDIRAC as Apache Mesos microservices
Computing resources:
- Grid: CREAM, ARC, HTCondorCE
- Private Clusters: SSH/GSI/SSH tunnels
- Clouds: VMDIRAC, CloudScheduler, Dynamic Torque
- Opportunistic (e.g. BOINC) with DIRAC pilots

Storage, Data Management:
- SRM (gfal, gfal2), XRootD, DIP, FTS3

Catalogs:
- LFC (Replica) + AMGA (Metadata)
- DFC (in development instance)

Extended:
- Automated “Production system” based on Transformation System

More details available for Highlights of Belle2 Computing.
• Use cases similar to other HEP experiments
 ○ Massive data-production and processing
 • 360M HS06 (DB12) CPU hours
 • 2 PB produced (disk/tape)
 ○ Need to automatise complex workflows

• DIRAC evaluation started 5 years ago
 ○ DIRAC-based setup built from scratch
 ○ Use DFC as replica and meta-data catalog
 ○ Use Transformation System to manage large ‘productions’

• Extended
 ○ Interfaces to easily configure CTA applications

• DIRAC contribution
 ○ Current development to achieve a fully ‘data-driven’ Transformation System
 ○ Aim to develop a ‘Production System’ general enough to be useful to many communities
Shared DIRAC instance for Linear Collider detector studies; CLICdp, ILD, SiD collaborations

- Computing Resources
 - OSG&WLCG
- DFC (metadata too)
- Storage: SRM, XRootD
- Last 12 months: 3k CPU years, 4M Jobs, 2PB

→ more details

Using OSG Computing Resources with (iLC)DIRAC

- Extended: Job Submission and Workflow Modules for Linear Collider Software
 - Easy chaining of applications
 - Simple job description via python

```
import UserJob
import Marlin
import DiracILC

d = DiracILC()
j = UserJob()
j.setOutputSandbox("recoEvents.alcio")
m = Marlin()
m.setVersion("ILCSoft-01-17-09")
m.setSteeringFile("Steering.xml")
m.setInputFile("SimEvents.alcio")
j.append(m)
j.submit(d)
```

- Very happy users running lots of jobs
Distributed computing system needed for peek needs of BESIII
- Set-up should be easy and flexible enough with few manpower and experience
- Start since 2012 and put into production in 2014
 - Jobs reached 1.29M in 2015

Extended:
- Task submission and management system
- Massive Data transfer system
- Site Monitoring system based on DIRAC Resource Status System (RSS)

Computing resources:
- 10% Grid, 65% Batch, 25% Clouds
- Integrate Clouds with VMDIRAC

Catalogs:
- Use DFC for Replica Catalog, Metadata Catalog, Dataset Catalog

Shared DIRAC instance since 2015: other IHEP experiments, eg. JUNO, CEPC, LHAASO, etc
Summary

- Actively used and developed
- Satisfies the requirements and use cases of several communities
- Can be extended to accommodate experiment-specific use cases
 - Common use cases:
 - Interfacing to experiment software
 - Productions handling

Come on board!
Questions/comments