
Computing in High Energy Physics, Oct.10–14, 2016
San Francisco, California, USA

Using OSG Computing Resources with

André Sailer, Marko Petric (CERN)
On Behalf of the CLICdp Collaboration

Motivation
The ILC VO is a merger of OSG and WLCG VOs for linear collider studies. Initial computing demands could be satisfied with the resources available in the WLCG via glite-WMS, CREAM, and ARC computing
elements. However, the adoption of the iLCDirac tool by more and more members of the linear collider community, and the untapped but accessible resources in the OSG encouraged the development of the interfaces
between DIRAC and the HTCondor-CE and Globus computing element middlewares.

DIRAC
The DIRAC interware gives homogeneous access to
heterogeneous resources

� Job environment provided through Pilots

� Common issues solved by DIRAC: Workload
Management; central Productions; File
Catalog; asynchronous Requests; access to
different computing elements, batch systems,
or clouds

� Can be extended to meet needs specific to VOs

Further information:

� DIRAC in Large Particle Physics Experiments;
Oct 13, 14:00 Track 7

� diracgrid.org, http://github.com/DIRACGrid

iLCDirac
iLCDirac is the extension for the Linear Collider community

� Python interface to run linear collider software

� Allow one to create chains of the linear collider applications

� Overlay system to choose random background samples for
physics events

Further information:

� ILCDIRAC, a DIRAC extension for the Linear Collider
community (CHEP 2013)

Whizard DD4hep/DDSim org.lcsim PFlow

Pythia SLIC Overlay Marlin

GuineaPig Mokka

Event Generation Simulation Digitization and Reconstruction

from DIRAC . Core . Base impor t S c r i p t
S c r i p t . parseCommandLine ()
impor t UserJob
impor t Mar l i n
impor t D i rac ILC
d = Di rac ILC ()
j = UserJob ()
j . setOutputSandbox ("recEvents.slcio")
m = Mar l i n ()
m. s e tV e r s i o n ("ILCSoft -01-17-09")
m. s e t S t e e r i n g F i l e ("Steering.xml")
m. s e t I n p u t F i l e ("SimEvents.slcio")
j . append (m)
j . submit (d)

Using HTCondor-CEs inside DIRAC

DIRAC Computing Element API

Computing Element classes need to fulfil the following interface

� submitJob: Submit one or many pilots to given CE

� getJobStatus: Status of individual job on CE

� getJobOutput: Get pilot output and error file

� getCEStatus: Get running and pending jobs at CE

� killJob: kill the (pilot) job

� getPilotLoggingInfo: Get log for pilot

Submission and Configuration
� condor submit -terse subFile.jdl

executable = DIRAC XXXXXPilot . py
universe = g r i d
use x509userproxy = t r u e
output = $ (Cluster) . $ (Process) . out
er ror = $ (Cluster) . $ (Process) . e r r
log = $ (Cluster) . $ (Process) . log
environment = "HTCONDOR_JOBID=$(Cluster).$(Process)"

i n i t i a l d i r = %(i n i t i a l d i r O n S u bm i t S e r v e r) s
gr id resource = condor %(ceName) s %(ceName) s :9619
ShouldTransferFi les = YES
WhenToTransferOutput = ON EXIT OR EVICT
k i l l s i g=SIGTERM
%(e x t r a L i n e) s
Queue %(nJobs) s

� Pilot-executable bundled with proxy, created dynamically
� Further configuration – extraLines – via DIRAC

ConfigSystem: Global, per Site, per CE
� periodic remove=NumSystemHolds > 0
� request cpus = 8
� . . .

Requirements

� DIRAC instance

� Running condor daemons (condor master) on one of the
DIRAC servers

Implementation

� The HTCondor-CE computing element class is implemented
by calling plain condor commands

� Using raw commands for easier debugging; keep DIRAC and
condor issues separate

Job Control
DIRAC Workload Management system takes care of matching pay-
loads to jobs, pilot status is monitored automatically

� Environment variable HTCONDOR JOBID, unique for each
pilot, is used to identify pilots

� condor q and condor history to obtain pilot status

� condor to kill and remove held pilots to prevent restart

� Output log files automatically downloaded by HTCondor and
passed into DIRAC on demand (see Monitoring to the right)

Problems and Open Issues

Problems:

� Pilots and payloads do not support check-pointing, if a job is
held it has to be killed

� periodic remove needs to be tweaked for specific CEs

Open issues:

� Monitoring CE status: Query the CE how many jobs from
given VO are running, currently using DIRAC’s own count of
pilots at CE

Monitoring

Monitor pilot status, read log files and output via the DIRACWebApp

OSG Resource Usage by the ILC VO

Globus CE
� Link from DIRAC to Globus CEs implement via globus-job-* commands

� globus-job-submit, globus-job-clean, globus-job-status, globus-job-get-output

� Number of Globus CEs in decline since HTCondor-CE available
� Only one (1) left for the ILC VO

Summary
� OSG Computing Elements (HTCondor-CE, Globus) fully integrated in DIRAC

� Minimal effort for Dirac instance administrators to use HTCondor-CEs or Globus CEs

� Completely transparent to end users

Acknowledgement
Thanks to Iain Steers (CERN), the HTCondor team, and the DIRAC developers for their advice and support.

Mail: andre.sailer@cern.ch, marko.petric@cern.ch WWW: http://ilcdirac.cern.ch

