

- High-Throughput Computing
 - Focuses on the throughput over time of many jobs
 - Rather than performance of an individual jobs
 - Batch systems enables jobs to be executed on computing resources
 - The algorithms implemented optimises the utilisation of those resources
 - Metaschedulers optimise the utilization of geographically-separated computing resources based on state information provided by the local batch system managing those resources

- With the metascheduling, the decision of where the job is to be executed is made quite in advance
- Late-binding uses a place-holder job that when executes requests the most appropriate real job from a central job queue.
 - Allows scheduling decisions to be delayed until the last possible
 - Can also perform basic sanity checks of the environment
 - The result is that a private or application specific batch system is overlaid on the original resources
 - A lesson learned from the experience of metascheduling is that resource allocation should be decoupled from job execution and the order respected
- The HTCondor Glidein is an example implementation
 - The placeholder job starts a HTCondor daemon process
 - The result is a private HTCondor pool created out of dispersed computing resources by gliding-in HTCondor daemons

- Virtual Machines delivered by Infrastructure as a Service (laaS) has brought a new dimension to HTC.
 - Computing resources can now be dynamically provisioned on demand using resource leases which are typically defined in terms of wall time when using a pay-as-you-go model.
 - The late-binding approach is appropriate in this scenario to ensure that job execution occurs after the resource has been allocated.
 - The solution is therefore to overlay a batch system upon those dynamically provisioned computing resources.
 - The alternative to the VAC model is where the lifecycle management is done via the user or application themselves.
 - We will define this model as Throughput Amplification by the Stimulated Emission of Resources (TASER)

