
A fraction of the available resources is statically assigned and partitioned among projects. Additional assets are
partitioned dynamically following the effective request per project.
Efficient and fair access to dynamic resources must be granted to all projects. To this purpose, the FairShare
scheduling Service implements an algorithm which prioritises tasks according to an initial weight and to
the historical resource usage per project.

Algorithms:
• MultiFactor
• FairTree

• …

Priority
Manager:

• periodically calculates
priorities for queued requests

• uses a set of pluggable
algorithms

INDIGO - DataCloud
Better Software for Better Science

INDIGO - DataCloud receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement RIA 653549

A FairShare Scheduling Service for OpenNebula

Contact: Vallero S. (sara.vallero@to.infn.it) and Bagnasco S. (stefano.bagnasco@to.infn.it) - INFN Torino

Sunstone(

XML,RPC(

OPENNEBULA(CORE(

API(

DRIVERS(

PHYSICAL(
RESOURCES(

SQL(

DB(

FIFO((
SCHEDULER(

PRIORITY(
MANAGER(

ALGO(1(

XML,RPC(

ALGO(N(

DB((NO,SQL)(

OCA(

CLI(

Component(
Interface/API(
Tool(

In a large Public Cloud, applications can scale out with only cost driven limitations. Whereas a small
Scientific Datacenter normally works in a saturated regime and tenants are charged a priori by paying for
a fraction of the total assets. In this case, an advanced resource allocation policy is required in order to
optimise the datacenter occupation efficiency.

FUNCTIONAL REQUIREMENTS
• provide a resource partitioning framework to

handle unallocated (dynamic) resources
• guarantee the coexistence of the dynamic and

static partitioning models
• for dynamic resources, provide an allocation

mechanism based on a fair-share algorithm
• define a new kind of dynamic quota
• provide a queuing mechanism for handling the

requests that cannot be immediately fulfilled
• possibly apply the fair-share mechanism also to

non standard resources (e.g. GPUs)

DESIGN
• not intrusive in the OpenNebula (ONE) core
• self-contained module interacting only with the

ONE XML-RPC interface
• keep the original scheduler implementation for

matching resources to requests
• order the requests queue according to

priorities
• do not add new states to the VM life-cycle
• synergy with the ONE authentication, quotas,

monitoring and accounting systems

H
IG

H
 L

EV
EL

 A
R

C
H

IT
EC

TU
R

E

White boxes are the ONE original components.

Database:
• noSQL

(store large XML strings)
• holds the module’s
internal data:

- initial priority values
- historical information on
resource usage

- recalculated priority
values

- …

Client:

• interface to the service core
• uses a set of bindings

analogous to the ONE
Cloud API (OCA)

XML-RPC server:

• catch scheduler calls
• provide re-ordered queue

• redirect unknown methods to
the core ONE XML-RPC

server

Sunstone:
• extend the original GUI to monitor and

operate the new service

