UH

iti
2% Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Fred Stober, H. Stadie, C. Garbers,
N. Kovalchuk, P. Schleper, M. Fischer

K

Karlsruher Institut flr Technologie

,S

. ot
’ 4“ _o"

P 4 (‘ o,.
oy S o

What is grid-control?

» grid-control is an open source job submission tool
* [t supports all aspects of a common HEP user analysis:
— working with official experiment software with multiple
generation or processing steps
doing ntuple analysis with ROOT macros
— running all different kinds of custom software

e grid-control itself can run in virtually any environment
and is trivial to deploy, making it a useful tool in the
context of long term analysis efforts

* The software allows job submission to a wide range of
local or remote workflow management software.
For small tasks or tests, it can run jobs on the host itself.

e It is built around a powerful plugin and configuration
system, that allows to provide additional functionality and
customize the tool for the particular site / user / task /
experiment

« With grid-control, it is very easy to define tasks to process
complex parameter spaces, that can encompass
automatically partitioned datasets.

Configuration and Execution

grid-control can be used in conjunction with ini-style or python config
files that are given to the command line program or by calling the API
from a user script. The program is commonly run from within the GNU
screen tool.

Command line usage:

Keep running and resubmitting until the workflow is finished:
gridcontrol -c <config file>

Keep running and resubmit failing jobs up to 3 times:
gridcontrol -c -m 3 <config file>

Cancel all jobs:
gridcontrol -d ALL <config file>

Workflow execution:

While grid-control is running, it will check the status of running jobs,
retrieve and analyse finished jobs and submit jobs that are ready. When
the continuous mode (-c) is active, grid-control will repeat this until the
task is finished.

Basic example

This is a simple example that shows how to configure grid-control to run
a script on the local machine and write "Hello World" to an output file.

HelloWorld.conf
[global]
task = UserTask # run user scripts

backend = Host # jobs will run locally test.sh

[jobs] s

jobs =1 # number of jobs to run #!/bin/sh
walltime = 0:01 # anticipated run time echo Hello 3@
[task]

executable = test.sh # path to script

arguments = World # script arguments

> gridcontrol -c HelloWorld.conf

Current task ID: GCdbf7bebe81b5

<enad

Running in continuous mode. Press ~C to exit.

2016-10-01 14:00:00 - Job O state changed from INIT to SUBMITTED
2016-10-01 14:00:01 - Job O state changed from SUBMITTED to RUNNING

2016-10-01 14:00:02 - Job O state changed from RUNNING to DONE
2016-10-01 14:00:03 - Job O state changed from DONE to SUCCESS
2016-10-01 14:00:03 - Task successfully completed. Quitting...

> zcat worR.Hel loWorld/output/job 6/job.stdout.qgz
Hello World

Development

Development of grid-control started February 9th 2007. A week later on February 16th, the
first version with support for submitting CMSSW grid jobs was released. grid-control has
been constantly evolving ever since and continues to be open to contributions on github.
Despite the large set of functionality, and neglecting 3rd party libraries, grid-control still
only consists of less than 20k lines of code.

Unit Tests

The source code is automatically tested with Travis Cl using the default linux docker
container with CPython 2.6-3.5 and pypy/pypy3. Tests with older versions (Python 2.3-2.5)
are performed manually on a regular basis. The code coverage is reviewed with the
codecov.io service, while code convention and quality checks are done with landscape.io.
All services are integrated into the development workflow on github.

Achieving a high code coverage is difficult, since code that depends on external software
(eg. submission backends) or external services (eg. monitoring plugins) need execution
environments that simulate the behavior (and misbehavior) of these dependencies.

Total test coverage 92.3%

scripts grid-control 93%
78% core 92.8% cms
parameters backends utils config datasets 98%

| lreed |

The CMS experiment software for example is tested with a mock environment and a self-
written cmsRun script that generates the expected output for the given config files. Since
the CMS data services require authentication with a grid proxy, the CMS data provider
plugins are tested with a webservice query plugin that responds with pre-recorded
answers. The REST query plugins are tested against the public httpbin.org service.

Code structure

The source code is organized into packages, with grid control being the core package.
Other packages (like grid control cms) contain plugins that replace or extend the
functionality provided by the core. The packages are completely encapsulated - and as
long as the user didn't specify a plugin from the package, it can be safely deleted from the
tree.

Documentation

In addition to a large set of examples that cover most use cases and a small tutorial,
grid-control comes with a comprehensive list of all available configuration options
(currently more than 530) together with their default value, type, and scope. This list is
created by a custom script directly from the python AST and ensures that no option in the
source code is left undocumented.

Parameterized jobs

A particularly useful feature for HEP applications is the sophisticated job
parameter system built into grid-control. It provides a convenient way to
define the parameter space that a task is based on. This parameter
space can be build up from any number of variables and data sources,
which can have complex dependencies on each other.

It is also possible to specify the job requirements (like wall time /
memory) for each parameter space point separately.

) Job MUR MUF VAR
[global] include = HelloWorld.conf

[parameters] 0 1 1 def

parameters = (MUR,MUF) VAR[MUR] + {pspacel} 1 2 1 X

(MUR,MUF) = (1,1) (2,1) (1,2)

VAR = def 2 2 1 Y
2 => XY 3 1 2 def

[pEpaEel] 4 1 05

parameters = MUR MUF

MUR = 1 2 MUR = 0.5 1 S 2 05

MUF = 0.5 MUF = 0.5 6 05 05

The parameter system is able to handle changes to the data source as
well as to other parameters. It can transparently adapt the job
submission to the new parameter space at runtime.

Using the parameters on the bottom right, after previously starting
grid-control with the bottom left parameters, will disable (and cancel if
needed) job 5 and submit a new job 6.

Dataset processing pipeline

grid-control provides several plugins to retrieve datasets from different
sources. These datasets may contain a list of URLs, an optional number
of work units (eg. events or file size), arbitary metadata (eg. lumi section
information or generator parameters) and locality information.

All datasets are processed through a configurable pipeline of dataset
filters, partition plugins and partition filters. Several methods to split
datasets into partitions are supported. These partition plugins can take
the number of files, size of the work units, metadata or combinations

thereof into account. Multi
—- DatasetProcessor —-

Sequence of

dproc 1
g dataset blocks

(list of files with
common locality
and/or metadata)

provider 1 —HO—(O—

provider 2 —O—O—

MultiProvider

provider N —O—O—

Dataset providers can yield blocks from: A dataset processor can filter / modify
» manually specified dataset files blocks according to user specified rules eqg.
« a file with dataset information « add / filter block storage locations

« another grid-control workflow « truncate the number of files / events
« searching local or SE directories add dataset nick names

* CMS integration: DBS dataset path * CMS integration: filter with lumi metadata
.. and more ... and more

Multi Sequence of partitions
PartitionProcessor | (with processing information)

—HHF <-—~G-CI-D-D—[:]—CI-D{I-CI-D-D{I-CI-I} DatasetSplitter

Partitions are stored in a file
and loaded on demand ~a—

P pproc 2
I

—H HH <«| pproc M

The dataset splitter splits the blocks into
dataset partitions according to

« number of entries associated with the file
The partition processor ftranslates the . umber of files

partition information into the variables and . cjassification of file metadata information
requirements of a parameter space point. « CMS integration: run / lumi metadata

It can also perform operations that are _ and more / combinations of the above
similar to the work done by the dataset

processor (eg. change LFNs into PFNSs)

Dataset splitter Settings
event events per job =10
file files per job =3

events per job =10

pipeline filer per job = 3

run range = 1

metadata split metadata = x

Dataset resynchronization

Changes to the dataset on file level (additions or removals) as well as
on the work unit level (expanding or shrinking files), are propagated
through the processing pipeline and transparently trigger adjustments
to the processed parameter space.

For HEP workflows this allows to run a "live" analysis on an ever
expanding dataset with a single processing task that regularly queries
some datasource and spawns new jobs.

Example

The information from the dataset file "example.dbs" will yield 3 jobs (with
file1+file2, file3, fileA). The environment variable GEN_PROCESS will
be set to "Zmumu" for the first 2 jobs. Every 1 hour, the file
"example.dbs" will be re-read and the specified directory will be scanned
and jobs created / disabled if new files are found / files are missing.

[global] include = HelloWorld.conf example.dbs

[UserTask] [/PRIVATE/MC1#42]

dataset = metadata = ["GEN_PROCESS"]
example.dbs metadata common = ["Zmumu"]
myname : scan : srm:/storage/path /path/to/filel = 1000

files per job = /path/to/file2 = 2000

dataset refresh = 1:00 /path/to/file3 = 1000

partition processor += metadata [/PRIVATE/MC2]

partition metadata = GEN_PROCESS /path/to/fileA = 3000

Runtime support / monitoring

grid-control provides the user with several tools to make it easier and
safer to run jobs. It can substitute variables in configuration files where
needed, monitor the disk usage, automatically select an appropriate
scratch directory and perform the stage-in and stage-out of files. For
such storage operations, it is possible to specify multiple stage-out
destinations to spread the load of the file transfers (however close SEs
are always preferred).

Requirements / Installation

Requirements on the submission host:
» CPython 2.3 — 3.5/ pypy 2.4 — 5.3 with python standard libraries
* (optional) requests — for faster interactions with webservies
* (optional) cherrypy — for web based user interface
* (highly recommended) a supported submission backend (ARC,
Condor, CreamCE, glite/~-wms, PBS, LSF, SLURM, JMS, GridEngine)

Requirements on the worker nodes:
» bash, GNU coreutils, awk, sed
* (optional) gfal / other supported transfer tools — for storage access
* (optional) cvmfs — to allow running the LHC experiment software

Installation:
- pip install (--user) grid-control

Performance

These figures show the scaling behavior of grid-control for a workflow using a single core
on an i5 2.4GHz machine without SSD. Only the time used by grid-control itself is
measured. The workflow is configured to run with 3 different parameters over a randomly
generated data source, that contains 9 datasets, with each dataset block containing 99
files. The number of blocks was varied between 1 and 2000, resulting in up to 300k jobs.

60 60

n m c ' . ' : : :)
o = E 140 H —— ¢, (default) - p 700 =
_g 50 55 g o 190 —— t,., (M=1000) g g 3600 g
qg) E | —— tyt (default) | """""" g
40 50 E 100H wm (M=1000)} A LA ds00 €
—‘+’— maXRSS
30 45 BOp e o A b
R e e L
20 40 ; ; ; ; ; 1
40 S e 200
10 3 W0f SR S 100
0 : i . ; . . L 139 0 . : : ol
0 2000 4000 6000 8000 10000 12000 14000 0 50 100 150 200 250 300
number of jobs number of jobs [k]jobs]

10*

Memory usage (max resident set size) and
system time scales linearly between 1 and
300k jobs. In addition to 30 MB per task,
the used memory scales with 2.3 kbl/job
since the default job management plugin | | | :
keeps all job information also in memory. 10| fffffffffffffff ffffffffffffff e 10°
With an initial 0.25 s startup time, the time : 3 3 :
spend by grid-control itself on a single job
over it's whole lifetime is around
2.3 ms/job for most task sizes. ; - 3 ;
By default, the list of jobs with size N, that 0 i i i i Lo
is selected for submission, status query or W s = ey r

retrieval is sorted before a chunk of size M Nigps Ljobs]

is processed in one pass. In order to give users immediate feedback during processing,
the default chunk size is M = 100 jobs, which leads to a linear relationship between the
processing time and N for N < 10k jobs. This chunk size can be configured (shown is a
chunk size of M = 1k jobs), which allows to keep the linear behavior for N < 100k jobs.

| = ;t : (default)
| e (M=1000)

15 \NG- L e cof 10°

| —¥— max(RSS /NJ1

time/ N, [ms/job]

memory / N, [kB/job]

Design and Architecture

grid-control is using a highly modular design, where all functionality is
provided by specialized plugins. The core package provides around 300
plugins, most of which belong to one of 10 larger categories.

The CMS experiment software integration (with full support for CMSSW
version 1.x-8.x, DAS/DBS3/PhEDEX) is done with ~20 small plugins.

It is very easy to replace any plugin with a custom implementation that
is adapted to the particular needs of the user or adds new functionality.
The interplay between the different plugin categories is shown below.

The GUI plugins display status There are many different report plugins available to

information from the workf\low display the s’{atus of the jobs / workflow

, \ The task plugins define
The workflow is the \ what the jobs should do on
central piece of the e
puzzle. It ensures the GUI Reports
flow of information The parameter management
between the differth plugins allow the user to
parts < define the

submission N parameter/ parameter
space that
C workflow the jobs will
process
backend management
/
grid-control uses” the The dataset
submission backend to g'lltglns query
submit the jobs, check | ; ata sources,
their status and retrieve Job manager perform some
their output processing,
\ partition them

and use them

as parameters.
With an event handler, it is possible react to

job status transitions. They can be used to
update external monitoring services

The config
system is
responsible

for putting the pieces together

The job manager decides which jobs to
submit, check and retrieve. It can also
trigger job state changes (eg. timeouts).

The figure on the right is a visualization
how the different plugins are
communicating with each other.

In this example (with 2 backends and one
task) there are around 100 plugins that
work together to process the workflow.

These developers contributed code to grid-control:

e ausRabbertzArminScheurer
Flzjaonokslgscl?l'?etrArm N B U rg meilersps %elé

Ink Th Ml
JochenOttMa FISCheI’Ma’?tmggngfer

O IBenja&n)ngle"% P"'p°s°h°f°"’°°" Gregorkas LuigiCalligaris RaphaelFriese
iver ers
ArturAkhmetshin = LA\ &O < [SoramBerger

M@eggtéjleebeerelse an ue oIkerBuege

G nm DomlnlkHaltz

AndreasOehler J ébutThomasHauth

MatthiasSchnepf ElkeSchlleckau

https://github.com/grid-control/grid-control
Licensed under the Apache License 2.0

Copyright © 2007-2016
Karlsruhe Institute of Technology

[=]
[=] o

[=]

