
AMulti-groupandPreemptableSchedulingof
CloudResourceBasedonHTCondor

X.W.Jiang, J.H.Zou, Y.D.Cheng, J.Y.Shi
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Introduction
Virtual machines have many features ¡ª �exibility, easy controlling and
customized system environments. More and more organizations and en-
terprises deploy virtualization technology or cloud computing to build the
distributed system with the virtual resources. Cloud computing is widely
used in high energy physics.
We design and implement a method used in high energy physics that sup-
ports multiple resource groups and preemptable resource scheduling policy
based on virtual machines and HTCondor � a high throughput computing
system. It makes resources control more �exible and more e�cient.

Motivation
In IHEP, the resources belong to di�erent experiments, and each exper-
iment has one or more groups. Users in one group only can use the re-
sources belonging to the same group. So we must schedule jobs depending
on groups.
We have V-CONDOR(a dynamic cloud resource management system) to
allocate virtual resources to each group. But sometimes, the resources of
some groups are occupied for too long time. These resources have to be
collected back if the resource requirement of other groups became large.
So the appropriate preempting policy is very important for collecting re-
sources back. So we design and implement two components for multi-group
scheduling and preemptible resource scheduler.

Multi-group Scheduling
we designed permission controlling component(PCC) to ensure the di�er-
ent resource groups getting the suitable jobs which the job owner's user-
group must be permitted to running jobs on the resources.
PCC is a component at the front of HTCondor's schedd. The HTCondor's
default structure and the structure with PCC are shown as �gure 1.

match 
maker

Schedd

collector

Machine Machine Machine Machine Machine Machine MachineMachine Machine

user user user user user user

submitter

Group_list

match 
maker

schedd

collector

Machine Machine Machine Machine Machine Machine MachineMachine Machine

Juno

cms

condorpub

...

user user user user user user

Group check

Resource check

Attribute append

System_group

user-groups

submitter

Figure 1: HTCondor (left); HTCondor with PCC(right)

PCC have three parts. one is group check for conforming user's group are
exist in the system-group; second is resource check for checking whether
there are available resources in the resource group which maps to user
group; third is attribute append for parsing and formatting the job classad
attributes, then append the formatted classad to htcondor schedd. Util
now, the job submitted by PCC declares the resources in which group it
wants.

Preemptable Resource Scheduler (1)
Preemptable resource scheduler (PRS) maintenances a virtual resource
queue. All resources in the resource queue have their own priority which
decides their order in the queue. The resource with lower priority will be
preempted more possibly. The work �ow of PRS is shown as �gure 2.

vm_resource
queue

htcondor
collector

Response
sequence 

request
sequence 

vm_resource
preemption

vm_resource
checking

prioritity
fifo

filtered
resource

preempting
resource

operating
jobs

V_CONDOR

preempting
resources

htcondor
schedd

Figure 2: preemptable resource scheduler

Preemptable Resource Scheduler (2)
PRS keeps the synchronizing resource information with the HTCondor
collector, and real-timely sorts the resources based on priority. When some
resources need to be preempted, vm_resource preemption pulls out the
resources from queue as the policy of priority FIFO. Then the potentially
preempted resources will be check whether there are jobs running on them:
if one resource is occupied by job, operate (hold and rematch) the job
and send the resource to V_CONDOR, then V_CONDOR will reallocate
the resource to other groups; if not, return the resource to vm_resource
preemption, then vm_resource preemption will pull out one new resource.
In PRS, priority decides the possibility of preemption. So the calculation of
priority is the key of PRS. In our environment, some nice group have more
possibility to using resource and the resource occupied for shorter time
have more possibility to be preempted. So the priority consists of initial
group priority and cumulate priority. The priority equation is shown as
follow.

resourcepriority = αprio + k ∗ timeoccupied (1)

αprio presents the initial group priority depend on the importance of group-
s. k ∗ timeoccupied presents the cumulate priority which the lower value
causes more possibility of preemption and the timeoccupied presents the
time which resource is occupied. In our environment, we set each initial
group priority by interval 1000. For the purpose of reduce the e�ect by
the cumulate priority, the k ∗ timeexec must be less than 1000.

k = 1000/timeestimate (2)

resourcepriority = αprio + 1000 ∗ timeoccupied/timeestimate (3)

The resource priority is the equation 3, and timeestimate is an estimate
value of the max occupied time.

Results Heading
The permission controlling component have been used in the HTCondor
cluster of IHEP, supporting for experiment JUNO, CMS, LHAASO etc.
The statistics of completed jobs during 20160701-20160731 is shown as
table 1.

Experiment Completed jobs Total walltime (h)

JUNO 1051918 205944.1
CMS 270298 9252.3
LHAASO 28504 172880.0

Table 1: Jobs Statistics of IHEP in 20160701-20160731

The preemptable resource scheduler have been tested e�ectively. We simu-
lated 4000 jobs with di�erent submitting time and di�erent executing time
and three groups including LHAASO, BES and JUNO. Among the three
experiments, BES's initial group priority is 3000.0, LHAASO's is 2000.0,
JUNO's is 1000.0. timeestimate is set as 2080. And the queuing time of
each group is shown as table 2.

Experiment Without PRS (s) With PRS (s)

BES 60052.0 130.0
LHAASO 71529.0 132.0
JUNO 86627.0 365636.0

Table 2: Queuing Time without PRS and with PRS

As table 2 showing, scheduling BES and LHAASO jobs with PRS take
shorter time to idle than without PRS, that coincides with the higher
importance of BES and LHAASO.

Conclusion
The results indicate that permission controlling component and preempt-
able resource scheduler can complete to controlling the cloud resources and
users by groups and make resource allocation more �exible by self-de�ned
resource priority policy. It has been used in some experiments and we plan
expand the scalability soon.


