
MicroBooNE experiment simulation:
• 11 framework modules (experiment-

specific libraries of code)
• includes use of Geant4 detector

simulation software and ROOT i/o
• same code as run in their continuous

integration tests

Using Docker for High Energy Physics
Jim Kowalkowski, Adam Lyon, and Marc Paterno / Fermilab

Abstract

Docker is a container technology that provides a way to "wrap up
a piece of software in a complete filesystem that contains
everything it needs to run" [1]. We have experimented with
Docker to investigate its utility in three broad realms: (1) allowing
existing complex software to run in very different environments
from that in which the software was built (such as Cori, NERSC's
newest supercomputer), (2) as a means of delivering the same
development environment to multiple operating systems
(including laptops), and allowing the use of tools from both the
host and container system to their best advantage, and (3) as
away of encapsulating entire software suites (in particular, a
popular cosmology-based Markov Chain Monte Carlo parameter
estimation system), allowing them to be supported for use on
multiple operating systems without additional effort.

[1] "What is Docker?", https://www.docker.com/what-docker.

paterno/centos67base

centos:6.7

paterno/centos67-build-base_v4_9_3-e9-prof

paterno/centos67-uboone_v04_31_00-e9-prof

paterno/centos67-nu_v1_18_1-s26-e9-prof

jbkowalkowski/centos67-art_1_18_03_e9-prof

jbkowalkowski/centos67-study_1_18_03_e9-prof

• Make releases for OSX,
Scientific Linux (Centos) 6 & 7,
and Ubuntu 14 & 16

• Jenkins is great for multiplatform
builds, but sometimes need to
build and debug on particular
platform

• Docker containers are excellent
solutions to develop, build, test,
run, debug on platform that does
not match personal machine

• Docker for Mac makes Docker
easy to install, run and maintain
on Macs

• Container monitoring useful for
performance/memory debugging
and optimization

execution time (s)

TriggerResultInserter

UBTriggerSim

SingleGen

OpticalDRAMReadout

BackTrackerLoader

LArG4Ana

OpticalFEM

UBOpticalADCSim

LArG4

RootOutput

SimWireMicroBooNE

0 2 4 6 8

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●

●

●

●● ●●●●●●●●● ●●●

●●●●●●

cori

0 2 4 6 8

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●

●

●●●●●

●●●●●

●●●●●●● ●●●

●●● ●●●●

docker

0 2 4 6 8

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●

●●●●

●● ●●● ●●●●●●●

●●●●●●●●●●●●

●●●● ●●●●●

native

Generator
(Physics	
 events)

Geant4
(Detector	
 Response)

DetSim
(Electronics	
 Response)

Reco1
(Reconstruction	
 phase	
 I)

Reco2
(Reconstruction	
 phase	
 II)

• Code natively built on SLF6
• Build images on SLF6; upload to DockerHub
• Install on our local resources with

docker pull; on Cori with shifterimg pull
• Run containers using Docker’s (and

Shifter’s) ability to mount host filesystem in
running container through command-line
options (--volume=$SCRATCH/test.out:/mnt)

Running Existing Code

• Performance
comparison between
processors
• Native: Intel E52680v2,

2.8 GHz, Ivy Bridge
• Docker: Intel E52680v2,

2.8 GHz, Ivy Bridge
• Cori: Intel E52698v3,

2.3 GHz, Haswell
• Median time per event

about 0.5% slower with
the docker container

Hybrid development environment

Migrating to a native docker distribution
• Parameter estimation package

with focus on modularity
• Brings together & connects

existing code wrapped into
modules

• Plug in architecture - easy
replacement/addition of code

• Multi-language modules
• Choice of physics & likelihood

modules, samplers

platform

libc
libm

libpthread
...

wmapdata planck_data

compilers

libgfortran
libquadmath

libgcc_s
libstdc++
libgomp

sqlitecfitsio gsl fftw3

python
lapack
blas

camb

wmap planck suitesparse

SciPy

NumPy

nose

PyFITS

PyMC emcee

cosmosis
• Requirement: must build software

systems with modern C++
language features
• Old way: Satisfied by building

everything with a version of compiler
that we build and deliver

• New way: construct a container with the
system compiler that we pick, available
in a standard system location. The
system installer now works out-of-the
box! (yum, apt, even Python’s pip)

• Works with everything from laptops to
supercomputers

• 3rd party software integration is now
easy because system tools are used
directly

Example: Mac laptop with
Centos 6 Docker container
• Note use of host volumes
• Nice IDE on Host may be used

to develop code (many can
trigger a remote build)

• Docker commands are
complicated: need scripts

Mac Laptop

CVMFS
[Code Release]

Libraries/External
Headers

Centos 6 Docker
Container

Checked
out Source

Code

Build/Test/Run/
Debug

Build
Products

Nice IDE

Edit

Remote
Build

Compile &
 Link

Lookup
header

Compile &
 Link

HEP-CCE

