

Plancton ortunistic computing projections

an opportunistic computing project based on Docker containers

Plancton-slaves:

1 container = 1 job

Matteo Concas¹ [matteo.concas@cern.ch], Dario Berzano² [dario.berzano@cern.ch],
Stefano Bagnasco³, Stefano Lusso³, Massimo Masera^{1,3}, Maximiliano Puccio^{1,3}, Sara Vallero³

¹Università degli Studi di Torino • ²CERN - Genève • ³INFN - Torino

0

The Plancton daemon

Read

Get CPU

Generate unique ID hashes

What Plancton does:

- Continuously spawn pilot containers
 - → they execute a task then die
- Opportunistically use commodity resources
 - → spawn containers when user does not use computer
- Just a container scheduler
 - → full use-case implementation stays inside the container

Host node

Batch job queue

self.do_main_loop()

Plancton

daemon

- Carries out Monte Carlo physics productions as ALICE Grid jobs
- ▶ Running on the ALICE HLT development virtual cluster at CERN
- Main traits:
 - Pilot containers are Work Queue^[9] workers
 - CVMFS mounted from outside containers
 - ALICE Grid middleware (AliEn) submits to Work Queue via AliEn-WorkQueue → pure pilot approach
- Setup: Plancton^[1], Docker^[2], CVMFS^[5], Work Queue^[6], AliEn^[7], AliEn-WorkQueue^[8]

A sparse volunteer farm at ALICE Torino

- Execute prompt unplanned tasks (e.g. quick code testing, ...)
- Exploit commodity user workstations whose resources are shared and used by the very owners
- Main traits:
 - Pilot containers as worker nodes → Running HTCondor inside
 - CVMFS on Parrot → Isolated + consistent runtime environment,
 no need for --privileged (Apparmor/SELinux profiles)
 - Plancton + Docker → Enforce resource limits, continuously schedule new containers when it is possible
- Setup: Plancton^[1], Docker^[2], Parrot^[3], HTCondor^[4], CVMFS^[5]

Worker nodes as containers

- Volunteer computing: only Docker and Plancton required
- Jobs running on bare metal
- Deportunistic resource utilisation (configurable) → quickly given back to user when reclaimed
- Dedicated HTCondor submission node on a static resource

- Minimal configuration which can be changed at runtime
- RAM, swap and CPU are capped (cgroups + cfs)
- Containers run inside VMs (CentOS 7): VM layer required by HLT experts
- Jobs are run in a single-shot mode → container dies when done, allows Plancton to launch a new one
- ▶ ALICE Grid middleware unmodified → using AliEn-WorkQueue

Results

Service is working perfectly

- ▶ A lightweight scheduler for schedulers: completely independent, only takes care of container deployment
- Suitable for disposable tasks: input and output on external storage
- Plancton can be updated/restarted without affecting current running containers

