
Plancton
an opportunistic computing project 

based on Docker containers
Matteo Concas1 [matteo.concas@cern.ch], Dario Berzano2 [dario.berzano@cern.ch],

Stefano Bagnasco3, Stefano Lusso3, Massimo Masera1,3, Maximiliano Puccio1,3, Sara Vallero3

1Università degli Studi di Torino • 2CERN - Genève • 3INFN - Torino

A single tool for two use-cases

[1] Plancton: github.com/mconcas/plancton
[2] Docker: docker.com
[3] Parrot (CCTools): ccl.cse.nd.edu/software/parrot

[4] HTCondor: research.cs.wisc.edu/htcondor
[5] CVMFS: cernvm.cern.ch/portal/filesystem
[6] Work Queue (CCTools): ccl.cse.nd.edu/software/manuals/workqueue.html

[7] AliEn: alien.web.cern.ch
[8] Alien-wq: github.com/alisw/alien-workqueue

The Plancton daemon

A sparse volunteer farm at ALICE Torino
Execute prompt unplanned tasks (e.g. quick code testing, …)
Exploit commodity user workstations whose resources are shared
and used by the very owners
Main traits:

Pilot containers as worker nodes → Running HTCondor inside
CVMFS on Parrot → Isolated + consistent runtime environment,
no need for --privileged (Apparmor/SELinux profiles)
Plancton + Docker → Enforce resource limits, continuously
schedule new containers when it is possible

Setup: Plancton[1], Docker[2], Parrot[3], HTCondor[4], CVMFS[5]

A dedicated Grid site for Monte Carlo
Carries out Monte Carlo physics productions as ALICE Grid jobs
Running on the ALICE HLT development virtual cluster at CERN
Main traits:

Pilot containers are Work Queue[9] workers
CVMFS mounted from outside containers
ALICE Grid middleware (AliEn) submits to Work Queue via
AliEn-WorkQueue → pure pilot approach

Setup: Plancton[1], Docker[2], CVMFS[5], Work Queue[6], AliEn[7],
AliEn-WorkQueue[8]

Worker nodes as containers

Plancton
daemon

 self.do_main_loop()Read
config.

W
rite

logfile

Get CPU
usage

Host node

What Plancton does:
Continuously spawn pilot containers 
→ they execute a task then die
Opportunistically use commodity
resources 
→ spawn containers when user does not
use computer
Just a container scheduler 
→ full use-case implementation  
 stays inside the container

Plancton-slaves:
1 container = 1 job

Docker
APIs

CVMFS not mounted in docks, accessed with Parrot, no further resources bound*.

Batch job queue

Results

See only owned containers

Generate unique ID hashes

List every single operation in
DEBUG mode Dump configuration

List PIDs

AliEn + Work Queue execute node:

Volunteer computing: only Docker
and Plancton required
Jobs running on bare metal

Opportunistic resource utilisation
(configurable) → quickly given
back to user when reclaimed
Dedicated HTCondor submission
node on a static resource

HTCondor services are
subprocesses inside
Docker containers

Service is working perfectly
A lightweight scheduler for schedulers: completely independent,
only takes care of container deployment
Suitable for disposable tasks: input and output on external storage

Plancton can be updated/restarted without affecting current
running containers

Firewall:
no further ports exposed

HTCondor inside a container:

High-Level Trigger node

Virtual Host

Linux OS (CentOS 7)

Linux OS (CC7)

Docker

Docker Container (CentOS 6)

JOB EXECUTION

CVMFS

Plancton

AliEn-WQ
MasterWeb

Minimal configuration which
can be changed at runtime
RAM, swap and CPU are
capped (cgroups + cfs)
Containers run inside VMs
(CentOS 7): VM layer
required by HLT experts
Jobs are run in a single-shot
mode → container dies when
done, allows Plancton to
launch a new one
ALICE Grid middleware
unmodified → using AliEn-
WorkQueue

Sc
he

du
le

jo

bs

C
ol

le
ct

re
su

lts

WQ Worker

Job efficiency in simulations is not affected

Stable: constantly running ~800 jobs

