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Introduction ïthe team

Computer Science students 3rd semester

Supervisor: Dr. Szuba

Team members
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Introduction ïROOT

Process and visualize large amounts of scientific data (CERN)

Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping

Persistency mechanism for C++ objects
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Introduction - Node.js

Open source runtime environment

Develop server side web applications

Act as a stand alone web server

Google V8 engine to execute JavaScript code

rootJS bindings realized as native Node.js module written in C++
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Introduction - rootJS

Node.js bindings for ROOT

Be able to write ROOT code in Node.js programs

Integrate ROOT into Node.js based web applications

System Requirements

Mac OS X and Linux

ROOT 6

Node.js versions

Stable on Node.js 4.4 (LTS)
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Introduction ïWhat is PSE?

Praxis der Softwareentwicklung(PSE)

Create software in a team in 5 months using object oriented software engineering

Design: UML

The final software: Maximum of 10k LOC, 250 hours/person

Weekly meetings

Development phases - waterfall model

Implementation

Testing & Integration

Operation & Maintenance

System Design

Requirement Elicitation

Analysis
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Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes

Asynchronous wrappers for common I/O operations

Limiting criteria

Do not extend existing ROOT functionality

Do not necessarily support future ROOT versions



Steinbuch Centre for Computing
17

Phase Recap ïRequirement Elicitation

Language bindings



Steinbuch Centre for Computing
18

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions



Steinbuch Centre for Computing
19

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects



Steinbuch Centre for Computing
20

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler



Steinbuch Centre for Computing
21

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript



Steinbuch Centre for Computing
22

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript

Asynchronous calls



Steinbuch Centre for Computing
23

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript

Asynchronous calls

Use in web applications
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Usage scenario: event viewer
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Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data

Standalone ROOT application

Needs ROOT and dependencies installed

Needs access to data sources

Ą Limited portability
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Phase RecapïRequirement Elicitation

Client / Server approach using rootJS
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Phase RecapïRequirement Elicitation

Client / Server approach using rootJS

Server runs ROOT and dependencies, rootJS

Client only needs modern web browser

No heavy work load on client

ROOT + dependencies,

rootJS

Clients

Data sources
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Implementation

Testing & 

Integration

Operation & 

Maintenance

System Design

Requirement
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Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

Environment:

v8 API:

object exposure and callback handling

ROOT RTTI-interface

class, namespace, global and member variable information

RTTI
CLING | CINT
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Design ïRequirements Realization

provide async call context

before forwarding to RTTI API

init
callback

handling

function calls object access object creation

forward constructor calls

encapsulate construced

objects for exposure

recursively seek & expose

classes and namespaces

direct access to C++ objects in 

memory via corresponding proxy

object

JavaScript object

Proxy object

C++ object

entry point for client 

interactions with ROOT
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init
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Design ïCore Architecture

CallbackHandler

+ onAccess()

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()
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Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()
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Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

PrimitiveProxy

FunctionProxyFactory

+ fromArgs()
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Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

PrimitiveProxy

TemplateFactory

+ createTmplt()

FunctionProxyFactory

+ fromArgs()
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Implementation ïPrinciples

Test driven development

Tests for features

Test for encountered bugs

Tests rely on ROOT behaviour

Stable master branch

Features / bug fixes on separate branches
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Code & bug tracker hosted by GitHub
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Implementation ïOur Setup

Code & bug tracker hosted by GitHub

https://github.com/rootjs

Continuous integration via Jenkins http://jnugh.de:8080/

Integration tests

Code coverage

Doxygen documentation on http://rootjsdocs.jnugh.de/annotated.html

https://github.com/rootjs
http://jnugh.de:8080/
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Implementation ïOur Setup

Why GitHub?

Open source

Everyone knows how to use it

Always available
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Implementation ïOur Setup

Why Jenkins?

Originally wanted TravisCI

Building ROOT times out

On our own system timeouts donót matter

Jenkins also gets the job done
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Implementation ïOur Workflow

New features are developed in separate branches

Pull requests are only merged if all tests pass

Pull requests tagged ñhelp wantedñ are discussed during weekly meeting

Easch bug in the issue tracker is assigned a new branch containing a test for that bug

Bug is fixed in that branch

When all tests pass it can be merged
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Implementation ïTesting

~4000 lines of code with 77% line coverage

Missing lines are error handling or seldom used argument types (eg. ushort)

89 tests used in continous integration at the end of implementation
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Implementation ïTalking to Node: NodeHandler

V8 provides an exports

Expose everything using Set on that object

Use ROOTós GetListofGLobals, gClassTable etc.

Iterate those lists and create Templates/Proxies

Set them as properties in the exports object

How do we make sure ROOTós namepaces are preserved?

Each namespace gets a template which is Set to the export object

Classes are Set in their respective namespaceós object

exposeNamespaces()

ROOT Math

export

Fit Math
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Implementation ïTalking to Node: Callbacks

Each exposed function is associated with a static method in the CallbackHandler

Functions ñknowñ whether they are static, a constructor...

Can handle them accordingly
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Implementation ïFactories

Factories create wrapper proxies for ROOT objects, primitive data and functions

Invoked whenever a constructor is called

Invoked whenever a function is called for the first time

Template factory creates function templates for classes and namespaces

Iterates the class/namespaceós ListOfPublicDataMembers etc.

Creates proxies for those and Set s them as properties in the v8 template it is creating
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Implementation ïProxies

...
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Implementation ïProxies

Correct proxy to be used is selected using cling

Read/Writes happen in ROOT memory space

Everything is in sync all the time

Memory addresses come from our MetaInfo implementation

What about pointers?

Or pointer pointers?

Or pointer pointer pointers?

Ą Normalize memory address by referencing/derefencing until it is a void**
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Implementation ïFunctionProxy

Use cling to get function pointers based on call signatures

gInterpreter - >CallFunc_SetFuncProto

Parameters are passed using a buffer

Scalar values are copied into the buffer (converted from v8 objects)

Objects are always passed by address

Creation of buffer and call of function are separated to support async calling
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Implementation ïFunctionProxy

What was hard:

Very little documentation for cling API

Had to guess how to use some of the functionality

PyROOT was a helpful reference

What we didnót think of:

Overloaded methods that support different types of floating point numbers

If number fits into type, overloaded version is selected

Problem because for example

First variant uses float

We have a small number

Number has many decimal places
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Implementation ïAsynchronous Calls

During design we were uncertain how async calling would work

Planned to use ROOTós TThread

V8 does not work in a multithreaded environment

Interactions with node need to be done from main thread
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Implementation ïAsynchronous Calls Ą libuv

Libuvós message passing between async workers and v8

We use libuv because it integrates great with node

No need to wait for threads actively

Handled by signals Ą non-blocking & no waste of CPU time



Steinbuch Centre for Computing
130

Implementation ïObjectProxyBuilder



Steinbuch Centre for Computing
131

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers



Steinbuch Centre for Computing
132

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8



Steinbuch Centre for Computing
133

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8

When running a constructor ObjectProxy uses a v8 FunctionTemplate

Can not create ObjectProxies in worker threads



Steinbuch Centre for Computing
134

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8

When running a constructor ObjectProxy uses a v8 FunctionTemplate

Can not create ObjectProxies in worker threads

Ą ObjectProxyBuilder contains meta data to be used in the main thread
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Implementation ïDifferences between Proxies

Interfaces of ROOT classes we have to wrap in a proxy are incosistent

Want to have unified interface for all Proxies

Another layer of indirection saves the day:

MetaInfo encapsulates differences

Each Proxy instance has a MetaInfo object associated that contains the needed implementations

GlobalInfoMemberInfoPointerInfo EnumInfo FunctionInfo

MetaInfo
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Implementation ïWant more Libraries?

gSystem can load additional shared libraries

We have to updae our bindings whenever new classes are added

Provide an additional function loadlibrary() and refreshExports()

Loads a library and updates or just updates repsectively

Simply reexecutes exposure process

Traverses gClassTable etc and adds any new classes, globals ..

Fast because v8 properties are stored in a hashtable

Allows for library loading during runtime and even creation of new global variables
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Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators

Supports loading ROOT libraries

Open issues

Use function pointer as return value

Encapsulation of anonymous types
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Project Review

Team performance

It went really well 

Especially considering it was the first collaborated software project for most of us

Especially considering most of us didn't know any or very little C++ or JavaScript

What could be improved?

Time management 

Often difficult because of university/work commitments

Task management 

Difficult at first to coordinate who does what

Got better towards the end with Github issues
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Project Review

What we learned

Git is awesome!

LaTeX has a steep learning curve

Testing is effective!

A lot about the Google v8 engine

Old projects may have a somewhat chaotic code base
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Questions?

Find rootJS on github: https://github.com/rootjs

https://github.com/rootjs
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Sources
Danilo Piparo and Olivier Couet. ROOT Tutorial for Summer Students

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf

CERN. ROOT application domains

https://root.cern.ch/application-domains

Wiki. Node.js logo

https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg

exortech. v8 logo

https://github.com/exortech/presentations/blob/master/promise_of_node/img/v8.png

CERN. ROOT Shower Event Display

https://root.cern.ch/rootshower00png

http://uxrepo.com/icon/database-by-linecons

http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html

http://jestingstock.com/image-computer-icon.html

Axel Naumann. ROOT logo

http://axel.web.cern.ch/axel/images/portfolio/modals/logo_full-plus-text-hor.png

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
https://root.cern.ch/application-domains
https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg
https://github.com/exortech/presentations/blob/master/promise_of_node/img/v8.png
https://root.cern.ch/rootshower00png
http://uxrepo.com/icon/database-by-linecons
http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html
http://jestingstock.com/image-computer-icon.html
http://axel.web.cern.ch/axel/images/portfolio/modals/logo_full-plus-text-hor.png
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Sources

Octodex Github. logo

https://octodex.github.com/images/octobiwan.jpg

Jenkins-CI. jenkins logo

https://wiki.jenkins-ci.org/display/JENKINS/Logo

geekherocomic. The Price Of Continuous Integration

http://www.geekherocomic.com/2008/11/10/the-price-of-continuous-integration/

libuv. libuv logo

http://docs.libuv.org/en/v1.x/_static/logo.png

https://octodex.github.com/images/octobiwan.jpg
https://wiki.jenkins-ci.org/display/JENKINS/Logo
http://www.geekherocomic.com/2008/11/10/the-price-of-continuous-integration/
http://docs.libuv.org/en/v1.x/_static/logo.png

