ST

Karlsruhe Institute of Technology

rootJS T Node.js bindings for ROOT 6

PSE T Software Engineering Practice

J. Schwabe, C. Haas, T. Beffart, M. Fruh, S. Rajgopal, C. Wolff

STEINBUCH CENTRE FOR COMPUTING

"-‘-«,v T w

-

— ("(')\r‘)k,'n]\ ",

))

\\ (global-x;etgdq,

KITi The Research University in the Helmholtz Association

SKIAT

Introduction T the team — nn ¥

® Computer Science students 3rd semester
® Supervisor: Dr. Szuba

® Team members
® Christoph Haas
® Jonas Schwabe
® Theo Beffart
® Maximilian Frih
& Christoph Wolff

@ Sachin Rajgopal

Steinbuch Centre for Computing

Introduction i ROOT ﬂ(".

Karlsruhe Institute of Technology

® Process and visualize large amounts of scientific data (CERN)

W Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping
® Persistency mechanism for C++ objects

ROOT Application Domains

A selection of the
experiments
adopting ROOT

Offline Processing

Event Filtering

Data Storage: Local, Network

source: https:/findico.cern.ch/event/395198/attachments/791523/1084984/RO0T Summer Student Tutorial 2015.pdf

Steinbuch Centre for Computing

Introduction T ROOT

® Process and visualize large amounts of scientific data (CERN)

AT

Karlsruhe Institute of Technology

W Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping

® Persistency mechanism for C++ objects

Detector

Simulation

Data

Acquisition

Data

Analysis

ROOT Framework

Steinbuch Centre for Computing

AT

Introduction - Node.|s

® Open source runtime environment
® Develop server side web applications

B Act as a stand alone web server
® Google V8 engine to execute JavaScript code

® rootJS bindings realized as native Node.js module written in C++

N

¢

Steinbuch Centre for Computing

Introduction - rootJS

® Node.js bindings for ROOT
B Be able to write ROOT code in Node.js programs

B Integrate ROOT into Node.js based web applications

B System Requirements
® Mac OS X and Linux
®m ROOT 6

® Node.js versions
B Stable on Node.js 4.4 (LTS)

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

AT

Introduction 1 What is PSE?

® Praxis der Softwareentwicklung(PSE)

W Create software in a team in 5 months using object oriented software engineering
® Design: UML

® The final software: Maximum of 10k LOC, 250 hours/person

® Weekly meetings

® Development phases - waterfall model

Analysis

Requirement Elicitation

System Design

Implementation

Testing & Integration

\ 4

Operation & Maintenance

Steinbuch Centre for Computing

AIT

Karlsruhe Institute of Technology

Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

Operation &
Maintenance

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Required criteria

Phase Recap 1 Requirement Elicitation '&‘(IT

® Required criteria

® Work on Linux

Phase Recap 1 Requirement Elicitation '&‘(IT

® Required criteria
® Work on Linux

B Accept C++ code for JIT compilation

Steinbuch Centre for Computing

12

Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

13

Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation
® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

14

Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation
® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations

® Limiting criteria

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

5]

Phase Recap T Requirement Elicitation

® Required criteria

® Work on Linux

B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations
® Limiting criteria

® Do not extend existing ROOT functionality

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Phase Recap T Requirement Elicitation

® Required criteria

® Work on Linux

B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations
® Limiting criteria

® Do not extend existing ROOT functionality

® Do not necessarily support future ROOT versions

16

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
@ Use ROOT functions

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
® Use ROOT functions
B Use ROOT objects

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
® Use ROOT functions
B Use ROOT objects

® Use JIT compiler

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
® Use ROOT functions
B Use ROOT objects

® Use JIT compiler

® Focus on benefits provided by JavaScript

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
@ Use ROOT functions
B Use ROOT objects
® Use JIT compiler
® Focus on benefits provided by JavaScript

® Asynchronous calls

Steinbuch Centre for Computing

23

Phase Recap T Requirement Elicitation

® Language bindings
® Use ROOT functions
B Use ROOT objects
® Use JIT compiler
® Focus on benefits provided by JavaScript
® Asynchronous calls

® Use in web applications

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

W Usage scenario: event viewer

Phase Recap 1 Requirement Elicitation '&‘(IT

W Usage scenario: event viewer

B Visualizes experimental data

Steinbuch Centre for Computing

26

Phase Recap T Requirement Elicitation

W Usage scenario: event viewer

B Visualizes experimental data

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew
Ve || 9% @ €40 |0

Jif‘ ROOT Shower Monte Carlo

o

.

Event Display

Start Mew Event Main Evvent (Shaower)] Selacted Track | Statistics | PDG Table |
Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
e mu-
B nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
+| ﬁe‘

Zoom Forward

Zoom Backward

Particle = e+, E = 3.503e-002

Done - Tokal particles : 5612 - Waiting For next simulation

Steinbuch Centre for Computing

27

Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data

B Standalone ROOT application

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew

Ve || 9% @ €40 |0

.-;rif‘ ROOT Shower Monte Carlo
O Event Display

Start Mew Event Main Evvent (Shaower)] Selacted Track | Statistics | PDG Table |

Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
oo
3 nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
+| ﬁe‘

Zoom Forward

Zoom Backward

Done - Tokal particles : 5612 - Waiting For next simulation Particle = e+, E = 3.503e-002

Steinbuch Centre for Computing

Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew

vé&|e ona oo o
& ROOT Shower Monte Carlo

Event Display
Start Mew Event Main Evvent (Shaower)] Selacted Track | Statistics | PDG Table |

Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
oo
3 nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
+| ﬁe‘

Zoom Forward

Zoom Backward

Done - Tokal particles : 5612 - Waiting For next simulation Particle = e+, E = 3.503e-002

28

Steinbuch Centre for Computing

29

Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed

B Needs access to data sources

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools

Ve || 9% @ €40 |0

Miew

.-;rﬁ‘ ROOT Shower Monte Carlo
O Event Display

Start Mew Event Main Evvent (Shaower)] Selacted Track | Statistics | PDG Table |

Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
oo
3 nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
+| ﬁe‘

Zoom Forward

Zoom Backward

Done - Tokal particles : 5612 - Waiting For next simulation Particle = e+, E = 3.503e-002

Steinbuch Centre for Computing

30

Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed
B Needs access to data sources

A Limited portability

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools

PVE ¥ 0K | @ €90 |0
7 ROOT Shower Monte Carlo

Miew

Event Display
Start Mew Event Main Evvent (Shaower)] Selacted Track | Statistics | PDG Table |

Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
oo
3 nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
+| ﬁe‘

Zoom Forward

Zoom Backward

Done - Tokal particles : 5612 - Waiting For next simulation Particle = e+, E = 3.503e-002

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '&‘(IT

® Client / Server approach using rootJS

Phase Recap 1 Requirement Elicitation '-\X‘(I

® Client / Server approach using rootJS

®m Server runs ROOT and dependencies, root]JS

ROOT + dependencies,
rootJS

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation '-\X‘(IT

® Client / Server approach using rootJS

®m Server runs ROOT and dependencies, root]JS

Data sources\‘ E]

ROOT + dependencies,
rootJS

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation -\\J(IT

® Client / Server approach using rootJS
®m Server runs ROOT and dependencies, root]JS

& Client only needs modern web browser

N =

Data sources

O
—
=1
=0
L o
ROOT + dependencies, Clients

rootJS

Steinbuch Centre for Computing

Phase Recap 1 Requirement Elicitation -\\J(IT

® Client / Server approach using rootJS
®m Server runs ROOT and dependencies, root]JS
& Client only needs modern web browser

® No heavy work load on client

Data sources\‘ E]

O
—
=1
=0
L o
ROOT + dependencies, Clients

rootJS

35
Steinbuch Centre for Computing

36

Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

AIT

Karlsruhe Institute of Technology

Operation &
Maintenance

Steinbuch Centre for Computing

Phase Recap i Design ﬂ(“.

Steinbuch Centre for Computing

38

Phase Recap T Design

W Basic architecture requirements:

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

39

Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

40

Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

AT

Karlsruhe Institute of Technology

nede

ROOT

Data Analysis Framework

Steinbuch Centre for Computing

41

Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences

B different type systems (dynamic vs. static)

AT

Karlsruhe Institute of Technology

nede

- ROOT

Data Analysis Framework

Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks
® fundamental language differences

B different type systems (dynamic vs. static)

W prototype functions instead of classes

- ROOT

Data Analysis Framework

42
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)
B prototype functions instead of classes

® multithreading support?

- ROOT

Data Analysis Framework

43
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)
B prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapterf

» ROOT

Data Analysis Framework

44
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static) JavaScrlpt
W prototype functions instead of classes S‘,

® multithreading support?

rootdS

yd

Z

WmTask: Awrite an adapter

Data Analysis Framework

45
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z

C++

Data Analysis Framework

26
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z
® help incompatible interfaces to work together C++

ROOT

Data Analysis Framework

47
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z
® help incompatible interfaces to work together C++

® Environment;

ROOT

Data Analysis Framework

48
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".

W Basic architecture requirements: n N c

® multithreading support? i

WmTask: Awrite an adapter ‘

W software design pattern

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static)

W prototype functions instead of classes

ROOT

Data Analysis Framework

49
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation ‘

W software design pattern ‘

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static)

W prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapter

B v8 API:

B object exposure and callback handling

ROOT

Data Analysis Framework

50
Steinbuch Centre for Computing

Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation ‘

B software design pattern ‘

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)

W prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapterf

B v8 API:

B object exposure and callback handling

® ROOT RTTI-interface RO OT
B class, namespace, global and member variable information ’

Data Analysis Framework

51
Steinbuch Centre for Computing

Design T Requirements Realization '-\X‘(IT

Steinbuch Centre for Computing

Design T Requirements Realization ﬂ(".

Steinbuch Centre for Computing

54

Design I Requirements Realization

B recursively seek & expose
classes and namespaces

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

55

Design I Requirements Realization

N callback
handling

B recursively seek & expose

classes and namespaces

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design I Requirements Realization ﬂ(".

“ | callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces

Steinbuch Centre for Computing

57

Design I Requirements Realization

callback
handling

B recursively seek & expose

classes and namespaces

function calls object access

AT

Karlsruhe Institute of Technology

@ entry point for client
interactions with ROOT

object creation

Steinbuch Centre for Computing

58

AT

Design I Requirements Realization

“ | callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces

@ provide async call context
before forwarding to RTTI API

Steinbuch Centre for Computing

AT

Design I Requirements Realization

“ | callback ® entry point for client
handling interactions with ROOT

A

B recursively seek & expose
classes and namespaces

@ provide async call context B direct access to C++ objects in
before forwarding to RTTI API memory via corresponding proxy
object

Steinbuch Centre for Computing

60

AT

Design I Requirements Realization

“ callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces

@ provide async call context B direct access to C++ objects in ® forward constructor calls
before forwarding to RTTI API memory via corresponding proxy ® encapsulate construced
object objects for exposure

Steinbuch Centre for Computing

AT

Design I Requirements Realization

“ callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces JavaScript object

Proxy object

object access

object creation

@ provide async call context B direct access to C++ objects in ® forward constructor calls
before forwarding to RTTI API memory via corresponding proxy ® encapsulate construced
object objects for exposure

61
Steinbuch Centre for Computing

62

Design i Architecture Concept

callback
handling

init

object access

object creation

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design T Architecture Concept ﬂ(".

callback
handling

init

object access object creation

FunctionProxyFactory
+ fromArgs()

Steinbuch Centre for Computing

Design T Architecture Concept ﬂ(".

callback

object creation

object access
FunctionProxyFactory
+ fromArgs()

FunctionProxy

+ call()

Steinbuch Centre for Computing

Design i Architecture Concept

callback
handling

init

object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy
+ call()

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

AT

Design T Architecture Concept

callback
handling

init

object access object creation

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

FunctionProxy
+ call()

66
Steinbuch Centre for Computing

+ writeValue()

Design i Architecture Concept

callback
handling

init

object access object creation

J

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

+ writeValue()

FunctionProxy
+ call()

ObjectProxyFactory
+ createCapsule()

AIT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design i Architecture Concept

callback
handling

init

object access object creation

J

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

+ writeValue()

FunctionProxy
+ call()

AIT

Karlsruhe Institute of Technology

ObjectProxyFactory ' ' TemplateFactory
+ createCapsule() + createTmplt()

Steinbuch Centre for Computing

Design i Architecture Concept

FunctionProxyFactory

+ fromArgs()

callback
handling

object access

ObjectProxy

+ readValue()

+ writeValue()

object creation

ObjectProxyFactory ' '
+ createCapsule()
ObjectProxy
- address

AIT

Karlsruhe Institute of Technology

TemplateFactory

+ createTmplt()

Steinbuch Centre for Computing

Design i Architecture Concept

FunctionProxyFactory

+ fromArgs()

callback
handling

object access

ObjectProxy

+ readValue()

+ writeValue()

object creation

ObjectProxyFactory

+ createCapsule()

ObjectProxy
- address

AIT

Karlsruhe Institute of Technology

“ TemplateFactory
+ createTmplt()

Steinbuch Centre for Computing

Design i Architecture Concept

AIT

Karlsruhe Institute of Technology

callback
handling

object access object creation

FunctionProxyFactory ObjectProxy ObjectProxyFactory

+ fromArgs() + readValue() + createCapsule()

+ writeValue()

TemplateFactory

+ createTmplt()

Steinbuch Centre for Computing

Design i Core Architecture '&‘(IT

Steinbuch Centre for Computing

73

Design i Core Architecture

NodeHandler
+ exposeRO0OT()

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

74

Design i Core Architecture

NodeHandler CallbackHandler
+ exposeROOT() + onAccess()

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

75

Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory

+ fromArgs()

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

76

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design i Core Architecture ﬂ(".

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

FunctionProxy

+ call()

7
Steinbuch Centre for Computing

Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

FunctionProxy ObjectProxy

+ call() + read() / write()

78

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy

+ call() + read() / write()

79

AIT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Design i Core Architecture ﬂ(".

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy PrimitiveProxy

+ call() + read() / write()

80
Steinbuch Centre for Computing

Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy

+ call() + read() / write()

81

AIT

Karlsruhe Institute of Technology

TemplateFactory

+ createTmplt()

PrimitiveProxy

Steinbuch Centre for Computing

82

Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

AIT

Karlsruhe Institute of Technology

Operation &
Maintenance

Steinbuch Centre for Computing

Implementation i Principles '-\X‘(IT

Steinbuch Centre for Computing

84

Implementation i Principles

W Test driven development
B Tests for features
® Test for encountered bugs

B Tests rely on ROOT behaviour

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Principles

W Test driven development

W Tests for features

® Test for encountered bugs

B Tests rely on ROOT behaviour
W Stable master branch

B Features / bug fixes on separate branches

AT

Karlsruhe Institute of Technology

85

Steinbuch Centre for Computing

Implementation 1 Our Setup '&‘(IT

Steinbuch Centre for Computing

Implementation i Our Setup ﬂ(“.

® Code & bug tracker hosted by GitHub

B https://github.com/rootjs

Steinbuch Centre for Computing

https://github.com/rootjs

88

Implementation i Our Setup

® Code & bug tracker hosted by GitHub

B https://github.com/rootjs

® Continuous integration via Jenkins http://jnugh.de:8080/

B Integration tests
® Code coverage

B Doxygen documentation on http://rootjsdocs.jnugh.de/annotated.html

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

https://github.com/rootjs
http://jnugh.de:8080/

89

Implementation i Our Setup

® Why GitHub?

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

90

Implementation i Our Setup

® Why GitHub?
@ Open source
® Everyone knows how to use it

B Always available

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Our Setup ﬂ(".

® Why Jenkins?

Steinbuch Centre for Computing

92

Implementation i Our Setup

® Why Jenkins?

® Originally wanted TravisClI
@ Building ROOT times out

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Our Setup ﬂ(".

® Why Jenkins?

® Originally wanted TravisClI

@ Building ROOT times out

mOn our own system ti meo er

® Jenkins also gets the job done

93
Steinbuch Centre for Computing

Implementation T Our Workflow '-\X‘(IT

Steinbuch Centre for Computing

95

Implementation T Our Workflow

® New features are developed in separate branches
® Pull requests are only merged if all tests pass

BPul | requests tagged fdhelp wantedi

ar

e

SKIAT

Karlsruhe Institute of Technology

di scusse

Steinbuch Centre for Computing

96

Implementation T Our Workflow ﬂ(".

® New features are developed in separate branches

® Pull requests are only merged if all tests pass

BPul | requests tagged fihelp wantedii are discusse
W Easch bug in the issue tracker is assigned a new branch containing a test for that bug

B Bug is fixed in that branch

® When all tests pass it can be merged

Hil, aRE YoU ROSS, THE HEW I'M MIKE FROM SYSTEM I CANT. MY COMFPILER |5
Z SUY WORKEING ON THE IMTEERATION. YOUR CODE HaAs BROKEN: IT KEEFPS FRINTIMNG
KERNELP BEEN BREAKING THE BUILD CUT WEIRD ERROR MESSAZES
FOR &4 WEEK MOW., HOW ABOUT ALL THE TIME!
| FlxIME TP — ——

YEF. THAT'S ME,
I'M THE £ &Ur! HEHE.

BEE: "THE FRICE OF CONTIHUOUS INTEGRATION" = BY SALVATORE ICVERNE, HOY. 1O0TH, 2008 HTTF /W BEEKHERDCOMIC.COMS

Steinbuch Centre for Computing

Implementation i Testing '-\X‘(IT

Steinbuch Centre for Computing

98

Implementation i Testing

® ~4000 lines of code with 77% line coverage

B Missing lines are error handling or seldom used argument types (eg. ushort)

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

NO of tests

99

AIT

Implementation i Testing

® ~4000 lines of code with 77% line coverage

B Missing lines are error handling or seldom used argument types (eg. ushort)

W 89 tests used in continous integration at the end of implementation

100
. i

Passed

=0~ Failed

Skipped ||
50 -4 Total |(| I
25

I TV) . PN DR || R X ORI || N DO | O |1 W'Y

Steinbuch Centre for Computing

100

Implementation i Talking to Node:

NodeHandler ﬂ(“.

Karlsruhe Institute of Technology

root)S:ModeHandler

o

———— expose global functions ——

exposeRO0T
P II]I}

exposeGlobalFunctions()

——— expose global variables |——

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()

Steinbuch Centre for Computing

101

Implementation i Talking to Node:

® V8 provides an exports

B Expose everything using Set on that object

NodeHandler ﬂ(“.

Karlsruhe Institute of Technology

root)S:ModeHandler

exposeROOT()_ 1

———— expose global functions ——

exposeGlobalFunctions()

——— expose global variables |——

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()

Steinbuch Centre for Computing

Implementation i Talking to Node: NodeHand

ST

Karlsruhe Institute of Technology

root)S:ModeHandler

® V8 provides an exports
exposeROOT()_

>

B Expose everything using Set on that object

expose

global functions p——

BUse ROOT6s GetlListof GLobals, gCI
B lterate those lists and create Templates/Proxies

B Set them as properties in the exports object

8,5 08 ohbdrthdio®0

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

102

exposeNamespaces()

Steinbuch Centre for Computing

global variables ———

AT

Implementation i Talking to Node: NodeHandler ==5A%%

root)S:ModeHandler

® V8 provides an exports |

exposeRO0T
P II]I}

B Expose everything using Set on that object [

expose global functions j———

WBUse ROOTG6s GetlListof GLobal s, gCIlas.sdadioo

B lterate those lists and create Templates/Proxies

B Set them as properties in the exports object

expose global variables

WBHow do we make sure ROOTOS namepaces—ar e

exposeGlobals()

B Each namespace gets a template which is Set to the export object

M ClassesareSet i n their respective namespa

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()

Em om0 T

103
Steinbuch Centre for Computing

Implementation T Talking to Node: Callbacks '-\X‘(IT

Steinbuch Centre for Computing

Implementation T Talking to Node: Callbacks '-\X‘(IT

® Each exposed function is associated with a static method in the CallbackHandler

Steinbuch Centre for Computing

106

Implementation T Talking to Node: Callbacks '-\X‘(IT

® Each exposed function is associated with a static method in the CallbackHandler
BFunctions Aknowin whether they are static, a ¢c

@ Can handle them accordingly

Steinbuch Centre for Computing

on

Implementation i Factories '&‘(IT

Steinbuch Centre for Computing

108

IT

Implementation i Factories =\l

W Factories create wrapper proxies for ROOT objects, primitive data and functions
® Invoked whenever a constructor is called

B Invoked whenever a function is called for the first time

Steinbuch Centre for Computing

109

SKIAT

Implementation i Factories

W Factories create wrapper proxies for ROOT objects, primitive data and functions
® Invoked whenever a constructor is called
B Invoked whenever a function is called for the first time

® Template factory creates function templates for classes and namespaces
Blterates the class/ namespaceodos ListOfPu

B Creates proxies for those and Set s them as properties in the v8 template it is creating

bl i cDat a

Steinbuch Centre for Computing

Implementation i Proxies '-\X‘(IT

Steinbuch Centre for Computing

Implementation i Proxies '-\X‘(IT

Steinbuch Centre for Computing

Implementation i Proxies -\X‘(IT

Karlsruhe Institute of Technology

® Correct proxy to be used is selected using cling

Steinbuch Centre for Computing

Implementation i Proxies '-\X‘(IT

® Correct proxy to be used is selected using cling

® Read/Writes happen in ROOT memory space

® Everything is in sync all the time

Steinbuch Centre for Computing

Implementation i Proxies

® Correct proxy to be used is selected using cling

® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

114

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

115

Implementation i Proxies

® Correct proxy to be used is selected using cling
® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

® What about pointers?
® Or pointer pointers?

® Or pointer pointer pointers?

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

116

Implementation i Proxies

® Correct proxy to be used is selected using cling
® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

® What about pointers?
® Or pointer pointers?
® Or pointer pointer pointers?

A Normalize memory address by referencing/derefencing until it is a void**

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation T FunctionProxy '-\X‘(IT

Steinbuch Centre for Computing

118

Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures

m ginterpreter - >CallFunc_SetFuncProto

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures
m ginterpreter - >CallFunc_SetFuncProto
W Parameters are passed using a buffer

B Scalar values are copied into the buffer (converted from v8 objects)

B Objects are always passed by address

119

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

120

Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures
m ginterpreter - >CallFunc_SetFuncProto

W Parameters are passed using a buffer
B Scalar values are copied into the buffer (converted from v8 objects)
B Objects are always passed by address

W Creation of buffer and call of function are separated to support async calling

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation T FunctionProxy '-\X‘(IT

Steinbuch Centre for Computing

122

Implementation i FunctionProxy

® What was hard:
| Very little documentation for cling API
B Had to guess how to use some of the functionality

® PyROOT was a helpful reference

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i FunctionProxy

® What was hard:
| Very little documentation for cling API
B Had to guess how to use some of the functionality

® PyROOT was a helpful reference

BmWh a't we didnot t hi nk of

® Overloaded methods that support different types of floating point numbers
B If number fits into type, overloaded version is selected
B Problem because for example
B First variant uses float
B We have a small number

B Number has many decimal places

123

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Asynchronous Calls '&‘(IT

Steinbuch Centre for Computing

Implementation i Asynchronous Calls '&‘(IT

® During design we were uncertain how async calling would work
BPl anned to use ROOT6s TThr ead

Steinbuch Centre for Computing

Implementation i Asynchronous Calls

® During design we were uncertain how async calling would work
BPl anned to use ROOT6s TThr ead

B V8 does not work in a multithreaded environment

B Interactions with node need to be done from main thread

126

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Asynchronous Calls A libuv ﬂ(".

Implementation i Asynchronous Calls A libuv ﬂ(".

BLiIi buvds message passing between async wor ke

Implementation i Asynchronous Calls A libuv ﬂ(".

BLiIi buvds message passing between async wor ke

® We use libuv because it integrates great with node
® No need to wait for threads actively

® Handled by signals A non-blocking & no waste of CPU time

Steinbuch Centre for Computing

Implementation T ObjectProxyBuilder '&‘(IT

Steinbuch Centre for Computing

Implementation T ObjectProxyBuilder '&‘(IT

B V8 does not work with libuv workers

Implementation T ObjectProxyBuilder '&‘(IT

B V8 does not work with libuv workers

® ObjectProxy makes heavy use of v8

Steinbuch Centre for Computing

Implementation i ObjectProxyBuilder

® V8 does not work with libuv workers
® ObjectProxy makes heavy use of v8

® When running a constructor ObjectProxy uses a v8 FunctionTemplate

B Can not create ObjectProxies in worker threads

133

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

SKIAT

Implementation T ObjectProxyBuilder

® V8 does not work with libuv workers
® ObjectProxy makes heavy use of v8

® When running a constructor ObjectProxy uses a v8 FunctionTemplate

B Can not create ObjectProxies in worker threads

A ObjectProxyBuilder contains meta data to be used in the main thread

Steinbuch Centre for Computing

Implementation i Differences between Proxies ﬂ(".

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo

Steinbuch Centre for Computing

Implementation i Differences between Proxies ﬂ(".

® Interfaces of ROOT classes we have to wrap in a proxy are incosistent

® Want to have unified interface for all Proxies

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo

136
Steinbuch Centre for Computing

Implementation i Differences between Proxies ﬂ(".

® Interfaces of ROOT classes we have to wrap in a proxy are incosistent

® Want to have unified interface for all Proxies

® Another layer of indirection saves the day:
B Metalnfo encapsulates differences

® Each Proxy instance has a Metalnfo object associated that contains the needed implementations

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo

137
Steinbuch Centre for Computing

Implementation i Want more Libraries? '-\X‘(IT

Steinbuch Centre for Computing

139

Implementation i Want more Libraries?

W gSystem can load additional shared libraries

® We have to updae our bindings whenever new classes are added

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Implementation i Want more Libraries? '-\X‘(IT

W gSystem can load additional shared libraries

® We have to updae our bindings whenever new classes are added

® Provide an additional function loadlibrary() and refreshExports()
B Loads a library and updates or just updates repsectively

B Simply reexecutes exposure process
m Traverses gClassTable etc and adds any new classes, globals ..

B Fast because v8 properties are stored in a hashtable

® Allows for library loading during runtime and even creation of new global variables

140
Steinbuch Centre for Computing

SKIAT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

LIVE DEMONSTRATION

Steinbuch Centre for Computing

142

Project Review

@ Features

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

143

Project Review

@ Features

® Fulfills all required criteria

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

144

Project Review

® Features
® Fulfills all required criteria

® Runs on Linux and Mac OS X

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

145

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X

B Supports asynchronous execution for all functions

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

146

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions

® Supports C++ operators

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

147

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators

B Supports loading ROOT libraries

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

148

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries

® Open issues

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

149

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries
® Open issues

B Use function pointer as return value

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries
® Open issues
B Use function pointer as return value

® Encapsulation of anonymous types

150

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

il

Project Review

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript

152
Steinbuch Centre for Computing

Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript

® What could be improved?

153
Steinbuch Centre for Computing

Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript
® What could be improved?

® Time management

@ Often difficult because of university/work commitments

154
Steinbuch Centre for Computing

Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript
® What could be improved?
® Time management
@ Often difficult because of university/work commitments

B Task management
m Difficult at first to coordinate who does what

B Got better towards the end with Github issues

155
Steinbuch Centre for Computing

156

Project Review

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

157

Project Review

® What we learned

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

158

Project Review

® What we learned

B Git is awesome!

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

159

Project Review

® What we learned
B Git is awesome!

B LaTeX has a steep learning curve

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

160

Project Review

® What we learned
m Git is awesome!
B LaTeX has a steep learning curve

B Testing is effective!

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

161

Project Review

® What we learned
® Git is awesome!
B LaTeX has a steep learning curve
B Testing is effective!

® A lot about the Google v8 engine

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

162

Project Review

® What we learned
® Git is awesome!
B LaTeX has a steep learning curve
B Testing is effective!
® A lot about the Google v8 engine

® Old projects may have a somewhat chaotic code base

SKIAT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

163

Questions?

® Find rootJS on github: https://github.com/root|s

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

https://github.com/rootjs

164

Sources ﬂ(".

Karlsruhe Institute of Technology

® Danilo Piparo and Olivier Couet. ROOT Tutorial for Summer Students
B https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial 2015.pdf

® CERN. ROOT application domains

B https://root.cern.ch/application-domains

® Wiki. Node.js logo

B https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js 10g0.svqg

W exortech. v8 logo

B https://github.com/exortech/presentations/blob/master/promise of node/img/v8.png

® CERN. ROOT Shower Event Display

B https://root.cern.ch/rootshowerO0png

B http://uxrepo.com/icon/database-by-linecons

& http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html

B http://jestingstock.com/image-computer-icon.html

® Axel Naumann. ROOT logo

B http://axel.web.cern.ch/axel/images/portfolio/modals/logo full-plus-text-hor.png

Steinbuch Centre for Computing

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
https://root.cern.ch/application-domains
https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg
https://github.com/exortech/presentations/blob/master/promise_of_node/img/v8.png
https://root.cern.ch/rootshower00png
http://uxrepo.com/icon/database-by-linecons
http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html
http://jestingstock.com/image-computer-icon.html
http://axel.web.cern.ch/axel/images/portfolio/modals/logo_full-plus-text-hor.png

165

Sources

® Octodex Github. logo

B https://octodex.github.com/images/octobiwan.jpg

® Jenkins-Cl. jenkins logo
® https://wiki.jenkins-ci.org/display/JENKINS/Logo

® geekherocomic. The Price Of Continuous Integration

B http://www.qgeekherocomic.com/2008/11/10/the-price-of-continuous-integration/

® libuv. libuv logo

B http://docs.libuv.org/en/v1.x/ static/logo.png

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing

https://octodex.github.com/images/octobiwan.jpg
https://wiki.jenkins-ci.org/display/JENKINS/Logo
http://www.geekherocomic.com/2008/11/10/the-price-of-continuous-integration/
http://docs.libuv.org/en/v1.x/_static/logo.png

