
Steinbuch Centre for Computing
1

KIT ïThe Research University in the Helmholtz Association

STEINBUCH CENTRE FOR COMPUTING

www.kit.edu

rootJSïNode.js bindings for ROOT 6 

PSE ïSoftware Engineering Practice

J. Schwabe, C. Haas, T. Beffart, M. Früh, S. Rajgopal, C. Wolff



Steinbuch Centre for Computing
2

Introduction ïthe team

Computer Science students 3rd semester

Supervisor: Dr. Szuba

Team members

Christoph Haas

Jonas Schwabe

Theo Beffart

Maximilian Früh

Christoph Wolff

Sachin Rajgopal 



Steinbuch Centre for Computing
3

Introduction ïROOT

Process and visualize large amounts of scientific data (CERN)

Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping

Persistency mechanism for C++ objects



Steinbuch Centre for Computing
4

Introduction ïROOT

Process and visualize large amounts of scientific data (CERN)

Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping

Persistency mechanism for C++ objects



Steinbuch Centre for Computing
5

Introduction - Node.js

Open source runtime environment

Develop server side web applications

Act as a stand alone web server

Google V8 engine to execute JavaScript code

rootJS bindings realized as native Node.js module written in C++



Steinbuch Centre for Computing
6

Introduction - rootJS

Node.js bindings for ROOT

Be able to write ROOT code in Node.js programs

Integrate ROOT into Node.js based web applications

System Requirements

Mac OS X and Linux

ROOT 6

Node.js versions

Stable on Node.js 4.4 (LTS)



Steinbuch Centre for Computing
7

Introduction ïWhat is PSE?

Praxis der Softwareentwicklung(PSE)

Create software in a team in 5 months using object oriented software engineering

Design: UML

The final software: Maximum of 10k LOC, 250 hours/person

Weekly meetings

Development phases - waterfall model

Implementation

Testing & Integration

Operation & Maintenance

System Design

Requirement Elicitation

Analysis



Steinbuch Centre for Computing
8

Implementation

Testing & 

Integration

Operation & 

Maintenance

System Design

Requirement

Elicitation

Analysis



Steinbuch Centre for Computing
9

Phase Recap ïRequirement Elicitation

Required criteria



Steinbuch Centre for Computing
10

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux



Steinbuch Centre for Computing
11

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation



Steinbuch Centre for Computing
12

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes



Steinbuch Centre for Computing
13

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes

Asynchronous wrappers for common I/O operations



Steinbuch Centre for Computing
14

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes

Asynchronous wrappers for common I/O operations

Limiting criteria



Steinbuch Centre for Computing
15

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes

Asynchronous wrappers for common I/O operations

Limiting criteria

Do not extend existing ROOT functionality



Steinbuch Centre for Computing
16

Phase Recap ïRequirement Elicitation

Required criteria

Work on Linux

Accept C++ code for JIT compilation

Dynamically update C++ internals on changes

Asynchronous wrappers for common I/O operations

Limiting criteria

Do not extend existing ROOT functionality

Do not necessarily support future ROOT versions



Steinbuch Centre for Computing
17

Phase Recap ïRequirement Elicitation

Language bindings



Steinbuch Centre for Computing
18

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions



Steinbuch Centre for Computing
19

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects



Steinbuch Centre for Computing
20

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler



Steinbuch Centre for Computing
21

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript



Steinbuch Centre for Computing
22

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript

Asynchronous calls



Steinbuch Centre for Computing
23

Phase Recap ïRequirement Elicitation

Language bindings

Use ROOT functions

Use ROOT objects

Use JIT compiler

Focus on benefits provided by JavaScript

Asynchronous calls

Use in web applications



Steinbuch Centre for Computing
24

Phase RecapïRequirement Elicitation

Usage scenario: event viewer



Steinbuch Centre for Computing
25

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data



Steinbuch Centre for Computing
26

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data



Steinbuch Centre for Computing
27

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data

Standalone ROOT application



Steinbuch Centre for Computing
28

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data

Standalone ROOT application

Needs ROOT and dependencies installed



Steinbuch Centre for Computing
29

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data

Standalone ROOT application

Needs ROOT and dependencies installed

Needs access to data sources



Steinbuch Centre for Computing
30

Phase RecapïRequirement Elicitation

Usage scenario: event viewer

Visualizes experimental data

Standalone ROOT application

Needs ROOT and dependencies installed

Needs access to data sources

Ą Limited portability



Steinbuch Centre for Computing
31

Phase RecapïRequirement Elicitation

Client / Server approach using rootJS



Steinbuch Centre for Computing
32

Phase RecapïRequirement Elicitation

Client / Server approach using rootJS

Server runs ROOT and dependencies, rootJS

ROOT + dependencies,

rootJS



Steinbuch Centre for Computing
33

Phase RecapïRequirement Elicitation

Client / Server approach using rootJS

Server runs ROOT and dependencies, rootJS

ROOT + dependencies,

rootJS

Data sources



Steinbuch Centre for Computing
34

Phase RecapïRequirement Elicitation

Client / Server approach using rootJS

Server runs ROOT and dependencies, rootJS

Client only needs modern web browser

ROOT + dependencies,

rootJS

Clients

Data sources



Steinbuch Centre for Computing
35

Phase RecapïRequirement Elicitation

Client / Server approach using rootJS

Server runs ROOT and dependencies, rootJS

Client only needs modern web browser

No heavy work load on client

ROOT + dependencies,

rootJS

Clients

Data sources



Steinbuch Centre for Computing
36

Implementation

Testing & 

Integration

Operation & 

Maintenance

System Design

Requirement

Elicitation

Analysis



Steinbuch Centre for Computing
37

Phase RecapïDesign



Steinbuch Centre for Computing
38

Phase RecapïDesign

Basic architecture requirements:



Steinbuch Centre for Computing
39

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks



Steinbuch Centre for Computing
40

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences



Steinbuch Centre for Computing
41

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)



Steinbuch Centre for Computing
42

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes



Steinbuch Centre for Computing
43

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?



Steinbuch Centre for Computing
44

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ



Steinbuch Centre for Computing
45

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

JavaScript

ŷ

rootJS

Ź

C++



Steinbuch Centre for Computing
46

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

JavaScript

ŷ

rootJS

Ź

C++



Steinbuch Centre for Computing
47

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

JavaScript

ŷ

rootJS

Ź

C++



Steinbuch Centre for Computing
48

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

Environment:

RTTI
CLING | CINT

JavaScript

ŷ

rootJS

Ź

C++



Steinbuch Centre for Computing
49

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

Environment:

RTTI
CLING | CINT



Steinbuch Centre for Computing
50

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

Environment:

v8 API:

object exposure and callback handling

RTTI
CLING | CINT



Steinbuch Centre for Computing
51

Phase RecapïDesign

Basic architecture requirements:

dynamic object creation and encapsulation

non-blocking function calls via callbacks

fundamental language differences

different type systems (dynamic vs. static)

prototype functions instead of classes

multithreading support?

Task: Ăwrite an adapterñ

software design pattern

help incompatible interfaces to work together

Environment:

v8 API:

object exposure and callback handling

ROOT RTTI-interface

class, namespace, global and member variable information

RTTI
CLING | CINT



Steinbuch Centre for Computing
52

Design ïRequirements Realization



Steinbuch Centre for Computing
53

Design ïRequirements Realization

init



Steinbuch Centre for Computing
54

Design ïRequirements Realization

init

recursively seek & expose

classes and namespaces



Steinbuch Centre for Computing
55

Design ïRequirements Realization

init
callback

handling

recursively seek & expose

classes and namespaces



Steinbuch Centre for Computing
56

Design ïRequirements Realization

init
callback

handling

recursively seek & expose

classes and namespaces

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
57

Design ïRequirements Realization

init
callback

handling

function calls object access object creation

recursively seek & expose

classes and namespaces

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
58

Design ïRequirements Realization

provide async call context

before forwarding to RTTI API

init
callback

handling

function calls object access object creation

recursively seek & expose

classes and namespaces

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
59

Design ïRequirements Realization

provide async call context

before forwarding to RTTI API

init
callback

handling

function calls object access object creation

recursively seek & expose

classes and namespaces

direct access to C++ objects in 

memory via corresponding proxy

object

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
60

Design ïRequirements Realization

provide async call context

before forwarding to RTTI API

init
callback

handling

function calls object access object creation

forward constructor calls

encapsulate construced

objects for exposure

recursively seek & expose

classes and namespaces

direct access to C++ objects in 

memory via corresponding proxy

object

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
61

Design ïRequirements Realization

provide async call context

before forwarding to RTTI API

init
callback

handling

function calls object access object creation

forward constructor calls

encapsulate construced

objects for exposure

recursively seek & expose

classes and namespaces

direct access to C++ objects in 

memory via corresponding proxy

object

JavaScript object

Proxy object

C++ object

entry point for client 

interactions with ROOT



Steinbuch Centre for Computing
62

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation



Steinbuch Centre for Computing
63

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
64

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()



Steinbuch Centre for Computing
65

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()



Steinbuch Centre for Computing
66

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()



Steinbuch Centre for Computing
67

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()

ObjectProxyFactory

+ createCapsule()



Steinbuch Centre for Computing
68

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()

ObjectProxyFactory

+ createCapsule()

TemplateFactory

+ createTmplt()



Steinbuch Centre for Computing
69

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()

ObjectProxyFactory

+ createCapsule()

ObjectProxy

- address

TemplateFactory

+ createTmplt()



Steinbuch Centre for Computing
70

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()

ObjectProxyFactory

+ createCapsule()

ObjectProxy

- address

TemplateFactory

+ createTmplt()



Steinbuch Centre for Computing
71

Design ïArchitecture Concept

init
callback

handling

function calls object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()

ObjectProxy

+ readValue()

+ writeValue()

ObjectProxyFactory

+ createCapsule()

ObjectProxy

- address

TemplateFactory

+ createTmplt()



Steinbuch Centre for Computing
72

Design ïCore Architecture



Steinbuch Centre for Computing
73

Design ïCore Architecture

NodeHandler

+ exposeROOT()



Steinbuch Centre for Computing
74

Design ïCore Architecture

CallbackHandler

+ onAccess()

NodeHandler

+ exposeROOT()



Steinbuch Centre for Computing
75

Design ïCore Architecture

CallbackHandler

+ onAccess()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
76

Design ïCore Architecture

CallbackHandler

+ onAccess()

FunctionProxy

+ call()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
77

Design ïCore Architecture

CallbackHandler

+ onAccess()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
78

Design ïCore Architecture

CallbackHandler

+ onAccess()

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
79

Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
80

Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

PrimitiveProxy

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
81

Design ïCore Architecture

CallbackHandler

+ onAccess()

Proxy

- address

ObjectProxy

+ read() / write()

FunctionProxy

+ call()

ObjectProxyFactory

+ createCapsule()

NodeHandler

+ exposeROOT()

PrimitiveProxy

TemplateFactory

+ createTmplt()

FunctionProxyFactory

+ fromArgs()



Steinbuch Centre for Computing
82

Implementation

Testing & 

Integration

Operation & 

Maintenance

System Design

Requirement

Elicitation

Analysis



Steinbuch Centre for Computing
83

Implementation ïPrinciples



Steinbuch Centre for Computing
84

Implementation ïPrinciples

Test driven development

Tests for features

Test for encountered bugs

Tests rely on ROOT behaviour



Steinbuch Centre for Computing
85

Implementation ïPrinciples

Test driven development

Tests for features

Test for encountered bugs

Tests rely on ROOT behaviour

Stable master branch

Features / bug fixes on separate branches



Steinbuch Centre for Computing
86

Implementation ïOur Setup



Steinbuch Centre for Computing
87

Implementation ïOur Setup

Code & bug tracker hosted by GitHub

https://github.com/rootjs

https://github.com/rootjs


Steinbuch Centre for Computing
88

Implementation ïOur Setup

Code & bug tracker hosted by GitHub

https://github.com/rootjs

Continuous integration via Jenkins http://jnugh.de:8080/

Integration tests

Code coverage

Doxygen documentation on http://rootjsdocs.jnugh.de/annotated.html

https://github.com/rootjs
http://jnugh.de:8080/


Steinbuch Centre for Computing
89

Implementation ïOur Setup

Why GitHub?



Steinbuch Centre for Computing
90

Implementation ïOur Setup

Why GitHub?

Open source

Everyone knows how to use it

Always available



Steinbuch Centre for Computing
91

Implementation ïOur Setup

Why Jenkins?



Steinbuch Centre for Computing
92

Implementation ïOur Setup

Why Jenkins?

Originally wanted TravisCI

Building ROOT times out



Steinbuch Centre for Computing
93

Implementation ïOur Setup

Why Jenkins?

Originally wanted TravisCI

Building ROOT times out

On our own system timeouts donót matter

Jenkins also gets the job done



Steinbuch Centre for Computing
94

Implementation ïOur Workflow



Steinbuch Centre for Computing
95

Implementation ïOur Workflow

New features are developed in separate branches

Pull requests are only merged if all tests pass

Pull requests tagged ñhelp wantedñ are discussed during weekly meeting



Steinbuch Centre for Computing
96

Implementation ïOur Workflow

New features are developed in separate branches

Pull requests are only merged if all tests pass

Pull requests tagged ñhelp wantedñ are discussed during weekly meeting

Easch bug in the issue tracker is assigned a new branch containing a test for that bug

Bug is fixed in that branch

When all tests pass it can be merged



Steinbuch Centre for Computing
97

Implementation ïTesting



Steinbuch Centre for Computing
98

Implementation ïTesting

~4000 lines of code with 77% line coverage

Missing lines are error handling or seldom used argument types (eg. ushort)



Steinbuch Centre for Computing
99

Implementation ïTesting

~4000 lines of code with 77% line coverage

Missing lines are error handling or seldom used argument types (eg. ushort)

89 tests used in continous integration at the end of implementation



Steinbuch Centre for Computing
100

Implementation ïTalking to Node: NodeHandler

exposeNamespaces()



Steinbuch Centre for Computing
101

Implementation ïTalking to Node: NodeHandler

V8 provides an exports

Expose everything using Set on that object

exposeNamespaces()



Steinbuch Centre for Computing
102

Implementation ïTalking to Node: NodeHandler

V8 provides an exports

Expose everything using Set on that object

Use ROOTós GetListofGLobals, gClassTable etc.

Iterate those lists and create Templates/Proxies

Set them as properties in the exports object

exposeNamespaces()



Steinbuch Centre for Computing
103

Implementation ïTalking to Node: NodeHandler

V8 provides an exports

Expose everything using Set on that object

Use ROOTós GetListofGLobals, gClassTable etc.

Iterate those lists and create Templates/Proxies

Set them as properties in the exports object

How do we make sure ROOTós namepaces are preserved?

Each namespace gets a template which is Set to the export object

Classes are Set in their respective namespaceós object

exposeNamespaces()

ROOT Math

export

Fit Math



Steinbuch Centre for Computing
104

Implementation ïTalking to Node: Callbacks



Steinbuch Centre for Computing
105

Implementation ïTalking to Node: Callbacks

Each exposed function is associated with a static method in the CallbackHandler



Steinbuch Centre for Computing
106

Implementation ïTalking to Node: Callbacks

Each exposed function is associated with a static method in the CallbackHandler

Functions ñknowñ whether they are static, a constructor...

Can handle them accordingly



Steinbuch Centre for Computing
107

Implementation ïFactories



Steinbuch Centre for Computing
108

Implementation ïFactories

Factories create wrapper proxies for ROOT objects, primitive data and functions

Invoked whenever a constructor is called

Invoked whenever a function is called for the first time



Steinbuch Centre for Computing
109

Implementation ïFactories

Factories create wrapper proxies for ROOT objects, primitive data and functions

Invoked whenever a constructor is called

Invoked whenever a function is called for the first time

Template factory creates function templates for classes and namespaces

Iterates the class/namespaceós ListOfPublicDataMembers etc.

Creates proxies for those and Set s them as properties in the v8 template it is creating



Steinbuch Centre for Computing
110

Implementation ïProxies

...



Steinbuch Centre for Computing
111

Implementation ïProxies



Steinbuch Centre for Computing
112

Implementation ïProxies

Correct proxy to be used is selected using cling



Steinbuch Centre for Computing
113

Implementation ïProxies

Correct proxy to be used is selected using cling

Read/Writes happen in ROOT memory space

Everything is in sync all the time



Steinbuch Centre for Computing
114

Implementation ïProxies

Correct proxy to be used is selected using cling

Read/Writes happen in ROOT memory space

Everything is in sync all the time

Memory addresses come from our MetaInfo implementation



Steinbuch Centre for Computing
115

Implementation ïProxies

Correct proxy to be used is selected using cling

Read/Writes happen in ROOT memory space

Everything is in sync all the time

Memory addresses come from our MetaInfo implementation

What about pointers?

Or pointer pointers?

Or pointer pointer pointers?



Steinbuch Centre for Computing
116

Implementation ïProxies

Correct proxy to be used is selected using cling

Read/Writes happen in ROOT memory space

Everything is in sync all the time

Memory addresses come from our MetaInfo implementation

What about pointers?

Or pointer pointers?

Or pointer pointer pointers?

Ą Normalize memory address by referencing/derefencing until it is a void**



Steinbuch Centre for Computing
117

Implementation ïFunctionProxy



Steinbuch Centre for Computing
118

Implementation ïFunctionProxy

Use cling to get function pointers based on call signatures

gInterpreter - >CallFunc_SetFuncProto



Steinbuch Centre for Computing
119

Implementation ïFunctionProxy

Use cling to get function pointers based on call signatures

gInterpreter - >CallFunc_SetFuncProto

Parameters are passed using a buffer

Scalar values are copied into the buffer (converted from v8 objects)

Objects are always passed by address



Steinbuch Centre for Computing
120

Implementation ïFunctionProxy

Use cling to get function pointers based on call signatures

gInterpreter - >CallFunc_SetFuncProto

Parameters are passed using a buffer

Scalar values are copied into the buffer (converted from v8 objects)

Objects are always passed by address

Creation of buffer and call of function are separated to support async calling



Steinbuch Centre for Computing
121

Implementation ïFunctionProxy



Steinbuch Centre for Computing
122

Implementation ïFunctionProxy

What was hard:

Very little documentation for cling API

Had to guess how to use some of the functionality

PyROOT was a helpful reference



Steinbuch Centre for Computing
123

Implementation ïFunctionProxy

What was hard:

Very little documentation for cling API

Had to guess how to use some of the functionality

PyROOT was a helpful reference

What we didnót think of:

Overloaded methods that support different types of floating point numbers

If number fits into type, overloaded version is selected

Problem because for example

First variant uses float

We have a small number

Number has many decimal places



Steinbuch Centre for Computing
124

Implementation ïAsynchronous Calls



Steinbuch Centre for Computing
125

Implementation ïAsynchronous Calls

During design we were uncertain how async calling would work

Planned to use ROOTós TThread



Steinbuch Centre for Computing
126

Implementation ïAsynchronous Calls

During design we were uncertain how async calling would work

Planned to use ROOTós TThread

V8 does not work in a multithreaded environment

Interactions with node need to be done from main thread



Steinbuch Centre for Computing
127

Implementation ïAsynchronous Calls Ą libuv



Steinbuch Centre for Computing
128

Implementation ïAsynchronous Calls Ą libuv

Libuvós message passing between async workers and v8



Steinbuch Centre for Computing
129

Implementation ïAsynchronous Calls Ą libuv

Libuvós message passing between async workers and v8

We use libuv because it integrates great with node

No need to wait for threads actively

Handled by signals Ą non-blocking & no waste of CPU time



Steinbuch Centre for Computing
130

Implementation ïObjectProxyBuilder



Steinbuch Centre for Computing
131

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers



Steinbuch Centre for Computing
132

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8



Steinbuch Centre for Computing
133

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8

When running a constructor ObjectProxy uses a v8 FunctionTemplate

Can not create ObjectProxies in worker threads



Steinbuch Centre for Computing
134

Implementation ïObjectProxyBuilder

V8 does not work with libuv workers

ObjectProxy makes heavy use of v8

When running a constructor ObjectProxy uses a v8 FunctionTemplate

Can not create ObjectProxies in worker threads

Ą ObjectProxyBuilder contains meta data to be used in the main thread



Steinbuch Centre for Computing
135

Implementation ïDifferences between Proxies

GlobalInfoMemberInfoPointerInfo EnumInfo FunctionInfo

MetaInfo



Steinbuch Centre for Computing
136

Implementation ïDifferences between Proxies

Interfaces of ROOT classes we have to wrap in a proxy are incosistent

Want to have unified interface for all Proxies

GlobalInfoMemberInfoPointerInfo EnumInfo FunctionInfo

MetaInfo



Steinbuch Centre for Computing
137

Implementation ïDifferences between Proxies

Interfaces of ROOT classes we have to wrap in a proxy are incosistent

Want to have unified interface for all Proxies

Another layer of indirection saves the day:

MetaInfo encapsulates differences

Each Proxy instance has a MetaInfo object associated that contains the needed implementations

GlobalInfoMemberInfoPointerInfo EnumInfo FunctionInfo

MetaInfo



Steinbuch Centre for Computing
138

Implementation ïWant more Libraries?



Steinbuch Centre for Computing
139

Implementation ïWant more Libraries?

gSystem can load additional shared libraries

We have to updae our bindings whenever new classes are added



Steinbuch Centre for Computing
140

Implementation ïWant more Libraries?

gSystem can load additional shared libraries

We have to updae our bindings whenever new classes are added

Provide an additional function loadlibrary() and refreshExports()

Loads a library and updates or just updates repsectively

Simply reexecutes exposure process

Traverses gClassTable etc and adds any new classes, globals ..

Fast because v8 properties are stored in a hashtable

Allows for library loading during runtime and even creation of new global variables



Steinbuch Centre for Computing
141

LIVE DEMONSTRATION



Steinbuch Centre for Computing
142

Project Review

Features



Steinbuch Centre for Computing
143

Project Review

Features

Fulfills all required criteria



Steinbuch Centre for Computing
144

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X



Steinbuch Centre for Computing
145

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions



Steinbuch Centre for Computing
146

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators



Steinbuch Centre for Computing
147

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators

Supports loading ROOT libraries



Steinbuch Centre for Computing
148

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators

Supports loading ROOT libraries

Open issues



Steinbuch Centre for Computing
149

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators

Supports loading ROOT libraries

Open issues

Use function pointer as return value



Steinbuch Centre for Computing
150

Project Review

Features

Fulfills all required criteria

Runs on Linux and Mac OS X

Supports asynchronous execution for all functions

Supports C++ operators

Supports loading ROOT libraries

Open issues

Use function pointer as return value

Encapsulation of anonymous types



Steinbuch Centre for Computing
151

Project Review



Steinbuch Centre for Computing
152

Project Review

Team performance

It went really well 

Especially considering it was the first collaborated software project for most of us

Especially considering most of us didn't know any or very little C++ or JavaScript



Steinbuch Centre for Computing
153

Project Review

Team performance

It went really well 

Especially considering it was the first collaborated software project for most of us

Especially considering most of us didn't know any or very little C++ or JavaScript

What could be improved?



Steinbuch Centre for Computing
154

Project Review

Team performance

It went really well 

Especially considering it was the first collaborated software project for most of us

Especially considering most of us didn't know any or very little C++ or JavaScript

What could be improved?

Time management 

Often difficult because of university/work commitments



Steinbuch Centre for Computing
155

Project Review

Team performance

It went really well 

Especially considering it was the first collaborated software project for most of us

Especially considering most of us didn't know any or very little C++ or JavaScript

What could be improved?

Time management 

Often difficult because of university/work commitments

Task management 

Difficult at first to coordinate who does what

Got better towards the end with Github issues



Steinbuch Centre for Computing
156

Project Review



Steinbuch Centre for Computing
157

Project Review

What we learned



Steinbuch Centre for Computing
158

Project Review

What we learned

Git is awesome!



Steinbuch Centre for Computing
159

Project Review

What we learned

Git is awesome!

LaTeX has a steep learning curve



Steinbuch Centre for Computing
160

Project Review

What we learned

Git is awesome!

LaTeX has a steep learning curve

Testing is effective!



Steinbuch Centre for Computing
161

Project Review

What we learned

Git is awesome!

LaTeX has a steep learning curve

Testing is effective!

A lot about the Google v8 engine



Steinbuch Centre for Computing
162

Project Review

What we learned

Git is awesome!

LaTeX has a steep learning curve

Testing is effective!

A lot about the Google v8 engine

Old projects may have a somewhat chaotic code base



Steinbuch Centre for Computing
163

Questions?

Find rootJS on github: https://github.com/rootjs

https://github.com/rootjs


Steinbuch Centre for Computing
164

Sources
Danilo Piparo and Olivier Couet. ROOT Tutorial for Summer Students

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf

CERN. ROOT application domains

https://root.cern.ch/application-domains

Wiki. Node.js logo

https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg

exortech. v8 logo

https://github.com/exortech/presentations/blob/master/promise_of_node/img/v8.png

CERN. ROOT Shower Event Display

https://root.cern.ch/rootshower00png

http://uxrepo.com/icon/database-by-linecons

http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html

http://jestingstock.com/image-computer-icon.html

Axel Naumann. ROOT logo

http://axel.web.cern.ch/axel/images/portfolio/modals/logo_full-plus-text-hor.png

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf
https://root.cern.ch/application-domains
https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg
https://github.com/exortech/presentations/blob/master/promise_of_node/img/v8.png
https://root.cern.ch/rootshower00png
http://uxrepo.com/icon/database-by-linecons
http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html
http://jestingstock.com/image-computer-icon.html
http://axel.web.cern.ch/axel/images/portfolio/modals/logo_full-plus-text-hor.png


Steinbuch Centre for Computing
165

Sources

Octodex Github. logo

https://octodex.github.com/images/octobiwan.jpg

Jenkins-CI. jenkins logo

https://wiki.jenkins-ci.org/display/JENKINS/Logo

geekherocomic. The Price Of Continuous Integration

http://www.geekherocomic.com/2008/11/10/the-price-of-continuous-integration/

libuv. libuv logo

http://docs.libuv.org/en/v1.x/_static/logo.png

https://octodex.github.com/images/octobiwan.jpg
https://wiki.jenkins-ci.org/display/JENKINS/Logo
http://www.geekherocomic.com/2008/11/10/the-price-of-continuous-integration/
http://docs.libuv.org/en/v1.x/_static/logo.png

