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Introduction i ROOT ﬂ(".

Karlsruhe Institute of Technology

® Process and visualize large amounts of scientific data (CERN)

W Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping
® Persistency mechanism for C++ objects

ROOT Application Domains

A selection of the
experiments
adopting ROOT

Offline Processing

Event Filtering

Data Storage: Local, Network

source: https:/findico.cern.ch/event/395198/attachments/791523/1084984/RO0T Summer Student Tutorial 2015.pdf
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Introduction T ROOT

® Process and visualize large amounts of scientific data (CERN)

AT

Karlsruhe Institute of Technology

W Features a C++ interpreter (CLING) - i.e. used for rapid and efficient prototyping

® Persistency mechanism for C++ objects

Detector

Simulation

Data

Acquisition

Data

Analysis

ROOT Framework

Steinbuch Centre for Computing
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Introduction - Node.|s

® Open source runtime environment
® Develop server side web applications

B Act as a stand alone web server
® Google V8 engine to execute JavaScript code

® rootJS bindings realized as native Node.js module written in C++

N

¢

Steinbuch Centre for Computing



Introduction - rootJS

® Node.js bindings for ROOT
B Be able to write ROOT code in Node.js programs

B Integrate ROOT into Node.js based web applications

B System Requirements
® Mac OS X and Linux
®m ROOT 6

® Node.js versions
B Stable on Node.js 4.4 (LTS)

SKIAT

Karlsruhe Institute of Technology
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Introduction 1 What is PSE?

® Praxis der Softwareentwicklung(PSE)

W Create software in a team in 5 months using object oriented software engineering
® Design: UML

® The final software: Maximum of 10k LOC, 250 hours/person

® Weekly meetings

® Development phases - waterfall model

Analysis

Requirement Elicitation

System Design

Implementation

Testing & Integration

\ 4

Operation & Maintenance

Steinbuch Centre for Computing
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Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

Operation &
Maintenance
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Phase Recap 1 Requirement Elicitation '&‘(IT

® Required criteria
® Work on Linux

B Accept C++ code for JIT compilation
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Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

SKIAT
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Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation
® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations

SKIAT
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Phase Recap T Requirement Elicitation

® Required criteria
® Work on Linux
B Accept C++ code for JIT compilation
® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations

® Limiting criteria

SKIAT

Karlsruhe Institute of Technology
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Phase Recap T Requirement Elicitation

® Required criteria

® Work on Linux

B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations
® Limiting criteria

® Do not extend existing ROOT functionality

SKIAT
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Phase Recap T Requirement Elicitation

® Required criteria

® Work on Linux

B Accept C++ code for JIT compilation

® Dynamically update C++ internals on changes

® Asynchronous wrappers for common I/O operations
® Limiting criteria

® Do not extend existing ROOT functionality

® Do not necessarily support future ROOT versions

16
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® Language bindings
® Use ROOT functions
B Use ROOT objects
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® Language bindings
® Use ROOT functions
B Use ROOT objects

® Use JIT compiler
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® Language bindings
® Use ROOT functions
B Use ROOT objects

® Use JIT compiler

® Focus on benefits provided by JavaScript
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Phase Recap 1 Requirement Elicitation '&‘(IT

® Language bindings
@ Use ROOT functions
B Use ROOT objects
® Use JIT compiler
® Focus on benefits provided by JavaScript

® Asynchronous calls
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Phase Recap T Requirement Elicitation

® Language bindings
® Use ROOT functions
B Use ROOT objects
® Use JIT compiler
® Focus on benefits provided by JavaScript
® Asynchronous calls

® Use in web applications

SKIAT

Karlsruhe Institute of Technology
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W Usage scenario: event viewer

B Visualizes experimental data
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Phase Recap T Requirement Elicitation

W Usage scenario: event viewer

B Visualizes experimental data

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew
Ve || 9% @ €40 |0

Jif‘ ROOT Shower Monte Carlo

o

.

Event Display

Start Mew Event Main Evvent (Shaower) ] Selacted Track | Statistics | PDG Table |
Show Selection

= |
-4 BO
=-¢% D*(2010)-
] f{' Unknowin
+] ﬁe- ?
&nu(e) bar :
+] KDI+
= fe‘pi_
e mu-
B nu(mu) bar
=I-4% Disy*+ i
=% Dis)+
+] f{‘ etal
4§ tha(7703+
=I-4% gamma
+] f{‘e+
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Zoom Forward

Zoom Backward

Particle = e+, E = 3.503e-002

Done - Tokal particles : 5612 - Waiting For next simulation
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Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data

B Standalone ROOT application

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew
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Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools Wiew

vé&|e ona oo o
& ROOT Shower Monte Carlo

Event Display
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Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed

B Needs access to data sources

SKIAT

Karlsruhe Institute of Technology
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Phase Recap T Requirement Elicitation

W Usage scenario: event viewer
B Visualizes experimental data
B Standalone ROOT application
B Needs ROOT and dependencies installed
B Needs access to data sources

A Limited portability

SKIAT

Karlsruhe Institute of Technology

&7 Root Shower Event Display

File Event Tools

PVE ¥ 0K | @ €90 |0
7 ROOT Shower Monte Carlo
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Event Display
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Zoom Backward

Done - Tokal particles : 5612 - Waiting For next simulation Particle = e+, E = 3.503e-002
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® Client / Server approach using rootJS
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® Client / Server approach using rootJS

®m Server runs ROOT and dependencies, root]JS

ROOT + dependencies,
rootJS
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Phase Recap 1 Requirement Elicitation '-\X‘(IT

® Client / Server approach using rootJS

®m Server runs ROOT and dependencies, root]JS

Data sources\‘ E]

ROOT + dependencies,
rootJS

Steinbuch Centre for Computing



Phase Recap 1 Requirement Elicitation -\\J(IT

® Client / Server approach using rootJS
®m Server runs ROOT and dependencies, root]JS

& Client only needs modern web browser

N =

Data sources

O
—
=1
=0
L o
ROOT + dependencies, Clients

rootJS
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Phase Recap 1 Requirement Elicitation -\\J(IT

® Client / Server approach using rootJS
®m Server runs ROOT and dependencies, root]JS
& Client only needs modern web browser

® No heavy work load on client

Data sources\‘ E]

O
—
=1
=0
L o
ROOT + dependencies, Clients

rootJS

35
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Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

AIT

Karlsruhe Institute of Technology

Operation &
Maintenance
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Phase Recap T Design

W Basic architecture requirements:

SKIAT
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Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

SKIAT
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Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

AT

Karlsruhe Institute of Technology

nede

ROOT

Data Analysis Framework
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Phase Recap T Design

W Basic architecture requirements:
® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences

B different type systems (dynamic vs. static)

AT

Karlsruhe Institute of Technology

nede

- ROOT

Data Analysis Framework

Steinbuch Centre for Computing



Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks
® fundamental language differences

B different type systems (dynamic vs. static)

W prototype functions instead of classes

- ROOT

Data Analysis Framework

42
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)
B prototype functions instead of classes

® multithreading support?

- ROOT

Data Analysis Framework

43
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation
® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)
B prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapterf

» ROOT

Data Analysis Framework

44
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static) JavaScrlpt
W prototype functions instead of classes S‘,

® multithreading support?

rootdS

yd

Z

WmTask: Awrite an adapter

Data Analysis Framework

45
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z

C++

Data Analysis Framework

26
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z
® help incompatible interfaces to work together C++

ROOT

Data Analysis Framework

47
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n ‘ d e @

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences

m different type systems (dynamic vs. static) JavaScript
B prototype functions instead of classes S‘,
® multithreading support?
y _ N rootdS
WTask: Awrite an adapteri
W software design pattern Z
® help incompatible interfaces to work together C++

® Environment;

ROOT

Data Analysis Framework

48
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Phase Recap i Design ﬂ(".

W Basic architecture requirements: n N c

® multithreading support? i

WmTask: Awrite an adapter ‘

W software design pattern

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® dynamic object creation and encapsulation

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static)

W prototype functions instead of classes

ROOT

Data Analysis Framework

49
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation ‘

W software design pattern ‘

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® non-blocking function calls via callbacks

® fundamental language differences
m different type systems (dynamic vs. static)

W prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapter

B v8 API:

B object exposure and callback handling

ROOT

Data Analysis Framework

50
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Phase Recap i Design ﬂ(".
W Basic architecture requirements: n d c

® dynamic object creation and encapsulation ‘

B software design pattern ‘

® help incompatible interfaces to work together
CLING | CINT

® Environment;

® non-blocking function calls via callbacks

® fundamental language differences
B different type systems (dynamic vs. static)

W prototype functions instead of classes

® multithreading support?

WmTask: Awrite an adapterf

B v8 API:

B object exposure and callback handling

® ROOT RTTI-interface RO OT
B class, namespace, global and member variable information ’

Data Analysis Framework

51
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Design I Requirements Realization

B recursively seek & expose
classes and namespaces

AT

Karlsruhe Institute of Technology
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Design I Requirements Realization

N callback
handling

B recursively seek & expose

classes and namespaces

AT

Karlsruhe Institute of Technology
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Design I Requirements Realization ﬂ(".

“ | callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces
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Design I Requirements Realization

callback
handling

B recursively seek & expose

classes and namespaces

function calls object access

AT

Karlsruhe Institute of Technology

@ entry point for client
interactions with ROOT

object creation

Steinbuch Centre for Computing
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AT

Design I Requirements Realization

“ | callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces

@ provide async call context
before forwarding to RTTI API

Steinbuch Centre for Computing



AT

Design I Requirements Realization

“ | callback ® entry point for client
handling interactions with ROOT

A

B recursively seek & expose
classes and namespaces

@ provide async call context B direct access to C++ objects in
before forwarding to RTTI API memory via corresponding proxy
object

Steinbuch Centre for Computing



60

AT

Design I Requirements Realization

“ callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces

@ provide async call context B direct access to C++ objects in ® forward constructor calls
before forwarding to RTTI API memory via corresponding proxy ® encapsulate construced
object objects for exposure
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AT

Design I Requirements Realization

“ callback ® entry point for client
handling interactions with ROOT

B recursively seek & expose

classes and namespaces JavaScript object

Proxy object

object access

object creation

@ provide async call context B direct access to C++ objects in ® forward constructor calls
before forwarding to RTTI API memory via corresponding proxy ® encapsulate construced
object objects for exposure

61
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Design i Architecture Concept

callback
handling

init

object access

object creation

AT

Karlsruhe Institute of Technology

Steinbuch Centre for Computing



Design T Architecture Concept ﬂ(".

callback
handling

init

object access object creation

FunctionProxyFactory
+ fromArgs()
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Design T Architecture Concept ﬂ(".

callback

object creation

object access
FunctionProxyFactory
+ fromArgs()

FunctionProxy

+ call()

Steinbuch Centre for Computing



Design i Architecture Concept

callback
handling

init

object access object creation

FunctionProxyFactory

+ fromArgs()

FunctionProxy
+ call()

AT
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Design T Architecture Concept

callback
handling

init

object access object creation

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

FunctionProxy
+ call()

66
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Design i Architecture Concept

callback
handling

init

object access object creation

J

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

+ writeValue()

FunctionProxy
+ call()

ObjectProxyFactory
+ createCapsule()

AIT

Karlsruhe Institute of Technology
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Design i Architecture Concept

callback
handling

init

object access object creation

J

FunctionProxyFactory ObjectProxy

+ fromArgs() + readValue()

+ writeValue()

FunctionProxy
+ call()

AIT

Karlsruhe Institute of Technology

ObjectProxyFactory ' ' TemplateFactory
+ createCapsule() + createTmplt()
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Design i Architecture Concept

FunctionProxyFactory

+ fromArgs()

callback
handling

object access

ObjectProxy

+ readValue()

+ writeValue()

object creation

ObjectProxyFactory ' '
+ createCapsule()
ObjectProxy
- address

AIT

Karlsruhe Institute of Technology

TemplateFactory

+ createTmplt()
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Design i Architecture Concept

FunctionProxyFactory

+ fromArgs()

callback
handling

object access

ObjectProxy

+ readValue()

+ writeValue()

object creation

ObjectProxyFactory

+ createCapsule()

ObjectProxy
- address

AIT

Karlsruhe Institute of Technology

“ TemplateFactory
+ createTmplt()
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Design i Architecture Concept

AIT

Karlsruhe Institute of Technology

callback
handling

object access object creation

FunctionProxyFactory ObjectProxy ObjectProxyFactory

+ fromArgs() + readValue() + createCapsule()

+ writeValue()

TemplateFactory

+ createTmplt()

Steinbuch Centre for Computing
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Design i Core Architecture

NodeHandler
+ exposeRO0OT()

AT
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Design i Core Architecture

NodeHandler CallbackHandler
+ exposeROOT() + onAccess()

AT
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Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory

+ fromArgs()

AT
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Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory

+ fromArgs()

FunctionProxy

+ call()
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Design i Core Architecture ﬂ(".

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

FunctionProxy

+ call()

7
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Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

FunctionProxy ObjectProxy

+ call() + read() / write()

78
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Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy

+ call() + read() / write()
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Design i Core Architecture ﬂ(".

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy PrimitiveProxy

+ call() + read() / write()

80
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Design i Core Architecture

NodeHandler CallbackHandler

+ exposeROOT() + onAccess()

FunctionProxyFactory ObjectProxyFactory

+ fromArgs() + createCapsule()

Proxy
- address

FunctionProxy ObjectProxy

+ call() + read() / write()

81
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TemplateFactory

+ createTmplt()

PrimitiveProxy
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Analysis

Requirement
Elicitation

System Design

Implementation

Testing &
Integration

AIT
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Operation &
Maintenance
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Implementation i Principles

W Test driven development
B Tests for features
® Test for encountered bugs

B Tests rely on ROOT behaviour

SKIAT
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Implementation i Principles

W Test driven development

W Tests for features

® Test for encountered bugs

B Tests rely on ROOT behaviour
W Stable master branch

B Features / bug fixes on separate branches

AT

Karlsruhe Institute of Technology

85
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Implementation i Our Setup ﬂ(“.

® Code & bug tracker hosted by GitHub

B https://github.com/rootjs
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https://github.com/rootjs

88

Implementation i Our Setup

® Code & bug tracker hosted by GitHub

B https://github.com/rootjs

® Continuous integration via Jenkins http://jnugh.de:8080/

B Integration tests
® Code coverage

B Doxygen documentation on http://rootjsdocs.jnugh.de/annotated.html

SKIAT

Karlsruhe Institute of Technology
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https://github.com/rootjs
http://jnugh.de:8080/
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Implementation i Our Setup

® Why GitHub?

AT

Karlsruhe Institute of Technology
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Implementation i Our Setup

® Why GitHub?
@ Open source
® Everyone knows how to use it

B Always available

AT

Karlsruhe Institute of Technology
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Implementation i Our Setup ﬂ(".

® Why Jenkins?
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Implementation i Our Setup

® Why Jenkins?

® Originally wanted TravisClI
@ Building ROOT times out

AT

Karlsruhe Institute of Technology
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Implementation i Our Setup ﬂ(".

® Why Jenkins?

® Originally wanted TravisClI

@ Building ROOT times out

mOn our own system ti meo er

® Jenkins also gets the job done

93
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Implementation T Our Workflow

® New features are developed in separate branches
® Pull requests are only merged if all tests pass

BPul | requests tagged fdhelp wantedi

ar

e

SKIAT

Karlsruhe Institute of Technology

di scusse
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Implementation T Our Workflow ﬂ(".

® New features are developed in separate branches

® Pull requests are only merged if all tests pass

BPul | requests tagged fihelp wantedii are discusse
W Easch bug in the issue tracker is assigned a new branch containing a test for that bug

B Bug is fixed in that branch

® When all tests pass it can be merged

Hil, aRE YoU ROSS, THE HEW I'M MIKE FROM SYSTEM I CANT. MY COMFPILER |5
Z SUY WORKEING ON THE IMTEERATION. YOUR CODE HaAs BROKEN: IT KEEFPS FRINTIMNG
KERNELP BEEN BREAKING THE BUILD CUT WEIRD ERROR MESSAZES
FOR &4 WEEK MOW., HOW ABOUT ALL THE TIME!
| FlxIME TP — ——

YEF. THAT'S ME,
I'M THE £ &Ur! HEHE.

BEE: "THE FRICE OF CONTIHUOUS INTEGRATION" = BY SALVATORE ICVERNE, HOY. 1O0TH, 2008 HTTF /W BEEKHERDCOMIC.COMS
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Implementation i Testing

® ~4000 lines of code with 77% line coverage

B Missing lines are error handling or seldom used argument types (eg. ushort)
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AIT

Implementation i Testing

® ~4000 lines of code with 77% line coverage

B Missing lines are error handling or seldom used argument types (eg. ushort)

W 89 tests used in continous integration at the end of implementation

100
. i

Passed

=0~ Failed

Skipped ||
50 -4 Total |(| I
25

I TV ) . PN DR || R X ORI || N DO | O |1 W'Y
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Implementation i Talking to Node:

NodeHandler ﬂ(“.

Karlsruhe Institute of Technology

root)S:ModeHandler

o

———— expose global functions ——

exposeRO0T
P II]I}

exposeGlobalFunctions()

——— expose global variables |——

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()

Steinbuch Centre for Computing
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Implementation i Talking to Node:

® V8 provides an exports

B Expose everything using Set on that object

NodeHandler ﬂ(“.

Karlsruhe Institute of Technology

root)S:ModeHandler

exposeROOT()_ 1

———— expose global functions ——

exposeGlobalFunctions()

——— expose global variables |——

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()
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Implementation i Talking to Node: NodeHand

ST

Karlsruhe Institute of Technology

root)S:ModeHandler

® V8 provides an exports
exposeROOT()_

>

B Expose everything using Set on that object

expose

global functions p——

BUse ROOT6s GetlListof GLobals, gCI
B lterate those lists and create Templates/Proxies

B Set them as properties in the exports object

8,5 08 ohbdrthdio®0

exposeGlobals()

exXpose macros

exposeMacros()

—— expose classes & namespaces —

102

exposeNamespaces()
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Implementation i Talking to Node: NodeHandler ==5A%%

root)S:ModeHandler

® V8 provides an exports |

exposeRO0T
P II]I}

B Expose everything using Set on that object [

expose global functions j———

WBUse ROOTG6s GetlListof GLobal s, gCIlas.sdadioo

B lterate those lists and create Templates/Proxies

B Set them as properties in the exports object

expose global variables

WBHow do we make sure ROOTOS namepaces—ar e

exposeGlobals()

B Each namespace gets a template which is Set to the export object

M ClassesareSet i n their respective namespa

exXpose macros

exposeMacros()

—— expose classes & namespaces —

exposeNamespaces()

Em om0 T

103
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® Each exposed function is associated with a static method in the CallbackHandler
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Implementation T Talking to Node: Callbacks '-\X‘(IT

® Each exposed function is associated with a static method in the CallbackHandler
BFunctions Aknowin whether they are static, a ¢c

@ Can handle them accordingly

Steinbuch Centre for Computing
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Implementation i Factories =\l

W Factories create wrapper proxies for ROOT objects, primitive data and functions
® Invoked whenever a constructor is called

B Invoked whenever a function is called for the first time
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Implementation i Factories

W Factories create wrapper proxies for ROOT objects, primitive data and functions
® Invoked whenever a constructor is called
B Invoked whenever a function is called for the first time

® Template factory creates function templates for classes and namespaces
Blterates the class/ namespaceodos ListOfPu

B Creates proxies for those and Set s them as properties in the v8 template it is creating

bl i cDat a

Steinbuch Centre for Computing
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Implementation i Proxies -\X‘(IT

Karlsruhe Institute of Technology

® Correct proxy to be used is selected using cling
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Implementation i Proxies '-\X‘(IT

® Correct proxy to be used is selected using cling

® Read/Writes happen in ROOT memory space

® Everything is in sync all the time
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Implementation i Proxies

® Correct proxy to be used is selected using cling

® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

114
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Implementation i Proxies

® Correct proxy to be used is selected using cling
® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

® What about pointers?
® Or pointer pointers?

® Or pointer pointer pointers?
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Implementation i Proxies

® Correct proxy to be used is selected using cling
® Read/Writes happen in ROOT memory space
® Everything is in sync all the time

® Memory addresses come from our Metalnfo implementation

® What about pointers?
® Or pointer pointers?
® Or pointer pointer pointers?

A Normalize memory address by referencing/derefencing until it is a void**

SKIAT
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Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures

m ginterpreter - >CallFunc_SetFuncProto
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Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures
m ginterpreter - >CallFunc_SetFuncProto
W Parameters are passed using a buffer

B Scalar values are copied into the buffer (converted from v8 objects)

B Objects are always passed by address

119
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Implementation i FunctionProxy

® Use cling to get function pointers based on call signatures
m ginterpreter - >CallFunc_SetFuncProto

W Parameters are passed using a buffer
B Scalar values are copied into the buffer (converted from v8 objects)
B Objects are always passed by address

W Creation of buffer and call of function are separated to support async calling

SKIAT
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Implementation i FunctionProxy

® What was hard:
| Very little documentation for cling API
B Had to guess how to use some of the functionality

® PyROOT was a helpful reference
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Implementation i FunctionProxy

® What was hard:
| Very little documentation for cling API
B Had to guess how to use some of the functionality

® PyROOT was a helpful reference

BmWh a't we didnot t hi nk of

® Overloaded methods that support different types of floating point numbers
B If number fits into type, overloaded version is selected
B Problem because for example
B First variant uses float
B We have a small number

B Number has many decimal places

123
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Implementation i Asynchronous Calls '&‘(IT

® During design we were uncertain how async calling would work
BPl anned to use ROOT6s TThr ead
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Implementation i Asynchronous Calls

® During design we were uncertain how async calling would work
BPl anned to use ROOT6s TThr ead

B V8 does not work in a multithreaded environment

B Interactions with node need to be done from main thread

126
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Implementation i Asynchronous Calls A libuv ﬂ(".

BLiIi buvds message passing between async wor ke




Implementation i Asynchronous Calls A libuv ﬂ(".

BLiIi buvds message passing between async wor ke

® We use libuv because it integrates great with node
® No need to wait for threads actively

® Handled by signals A non-blocking & no waste of CPU time
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B V8 does not work with libuv workers



Implementation T ObjectProxyBuilder '&‘(IT

B V8 does not work with libuv workers

® ObjectProxy makes heavy use of v8
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Implementation i ObjectProxyBuilder

® V8 does not work with libuv workers
® ObjectProxy makes heavy use of v8

® When running a constructor ObjectProxy uses a v8 FunctionTemplate

B Can not create ObjectProxies in worker threads

133
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Implementation T ObjectProxyBuilder

® V8 does not work with libuv workers
® ObjectProxy makes heavy use of v8

® When running a constructor ObjectProxy uses a v8 FunctionTemplate

B Can not create ObjectProxies in worker threads

A ObjectProxyBuilder contains meta data to be used in the main thread

Steinbuch Centre for Computing



Implementation i Differences between Proxies ﬂ(".

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo
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Implementation i Differences between Proxies ﬂ(".

® Interfaces of ROOT classes we have to wrap in a proxy are incosistent

® Want to have unified interface for all Proxies

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo
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Implementation i Differences between Proxies ﬂ(".

® Interfaces of ROOT classes we have to wrap in a proxy are incosistent

® Want to have unified interface for all Proxies

® Another layer of indirection saves the day:
B Metalnfo encapsulates differences

® Each Proxy instance has a Metalnfo object associated that contains the needed implementations

Metalnfo

Pointerinfo Memberinfo Globallnfo Enuminfo Functioninfo

137
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Implementation i Want more Libraries?

W gSystem can load additional shared libraries

® We have to updae our bindings whenever new classes are added
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Implementation i Want more Libraries? '-\X‘(IT

W gSystem can load additional shared libraries

® We have to updae our bindings whenever new classes are added

® Provide an additional function loadlibrary() and refreshExports()
B Loads a library and updates or just updates repsectively

B Simply reexecutes exposure process
m Traverses gClassTable etc and adds any new classes, globals ..

B Fast because v8 properties are stored in a hashtable

® Allows for library loading during runtime and even creation of new global variables

140
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Project Review

@ Features
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Project Review

@ Features

® Fulfills all required criteria
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Project Review

® Features
® Fulfills all required criteria

® Runs on Linux and Mac OS X
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X

B Supports asynchronous execution for all functions
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions

® Supports C++ operators
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators

B Supports loading ROOT libraries
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries

® Open issues
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries
® Open issues

B Use function pointer as return value
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Project Review

B Features
® Fulfills all required criteria
® Runs on Linux and Mac OS X
B Supports asynchronous execution for all functions
® Supports C++ operators
B Supports loading ROOT libraries
® Open issues
B Use function pointer as return value

® Encapsulation of anonymous types
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Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript
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Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript

® What could be improved?
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Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript
® What could be improved?

® Time management

@ Often difficult because of university/work commitments

154
Steinbuch Centre for Computing



Project Review ..\X‘(IT

Karlsruhe Institute of Technology

® Team performance

B It went really well
B Especially considering it was the first collaborated software project for most of us

B Especially considering most of us didn't know any or very little C++ or JavaScript
® What could be improved?
® Time management
@ Often difficult because of university/work commitments

B Task management
m Difficult at first to coordinate who does what

B Got better towards the end with Github issues
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Project Review

® What we learned
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Project Review

® What we learned

B Git is awesome!
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Project Review

® What we learned
B Git is awesome!

B LaTeX has a steep learning curve
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Project Review

® What we learned
m Git is awesome!
B LaTeX has a steep learning curve

B Testing is effective!
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Project Review

® What we learned
® Git is awesome!
B LaTeX has a steep learning curve
B Testing is effective!

® A lot about the Google v8 engine
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Project Review

® What we learned
® Git is awesome!
B LaTeX has a steep learning curve
B Testing is effective!
® A lot about the Google v8 engine

® Old projects may have a somewhat chaotic code base
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Questions?

® Find rootJS on github: https://github.com/root|s
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https://github.com/rootjs
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Sources ﬂ(".

Karlsruhe Institute of Technology

® Danilo Piparo and Olivier Couet. ROOT Tutorial for Summer Students
B https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial 2015.pdf

® CERN. ROOT application domains

B https://root.cern.ch/application-domains

® Wiki. Node.js logo

B https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js 10g0.svqg

W exortech. v8 logo

B https://github.com/exortech/presentations/blob/master/promise of node/img/v8.png

® CERN. ROOT Shower Event Display

B https://root.cern.ch/rootshowerO0png

B http://uxrepo.com/icon/database-by-linecons

& http://www.iconarchive.com/show/outline-icons-by-iconsmind/Server-icon.html

B http://jestingstock.com/image-computer-icon.html

® Axel Naumann. ROOT logo

B http://axel.web.cern.ch/axel/images/portfolio/modals/logo full-plus-text-hor.png
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Sources

® Octodex Github. logo

B https://octodex.github.com/images/octobiwan.jpg

® Jenkins-Cl. jenkins logo
® https://wiki.jenkins-ci.org/display/JENKINS/Logo

® geekherocomic. The Price Of Continuous Integration

B http://www.qgeekherocomic.com/2008/11/10/the-price-of-continuous-integration/

® libuv. libuv logo

B http://docs.libuv.org/en/v1.x/ static/logo.png
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