

Big Data Analytics for Future Circular Collider Reliability and Availability Studies

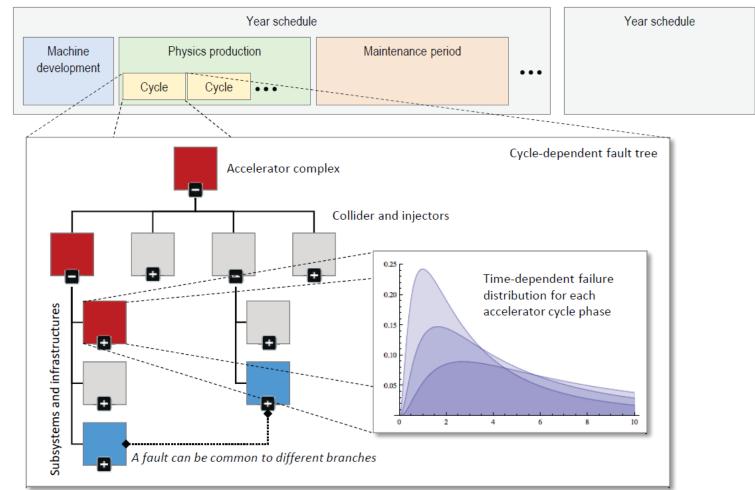
V. Begy ¹, A. Apollonio ², J. Gutleber ², M. Martin-Marquez ², A. Niemi ³, J.-P. Penttinen ⁴, E. Rogova ⁵, A. Romero-Marin ², P. Sollander ²

University of Vienna ¹ CERN ² Tampere University of Technology ³ Ramentor Oy ⁴ Delft University of Technology ⁵

Future Circular Collider Study [1]

- International collaboration hosted by CERN
- Launched 2014
- Response to a request stated in 2013 Update of the European Strategy for Particle Physics
- With a goal to conceive conceptual designs for energy and intensity frontier circular colliders for the post-LHC era

RAMS Modelling and Simulation [2]


- Integrated luminosity is a key performance indicator for particle colliders
- Depends directly on the availability of the accelerator complex
- LHC and its injectors as a case study to assess the potentials of industrial reliability engineering methods in the domain of particle accelerators
- Evaluate the feasibility and operability of large scale collider (100 km perimeter)

[2] Andrea Apollonio. First results from availability studies. http://indico.cern.ch/event/438866/contributions/1085059/

RAMS Modelling and Simulation

- Continuous modelling and simulation of subsystem cycle and operation phasedependent failure distributions
- Predictive models with high fidelity as output

Challenges: Data Integration & Data Quality

- Significant manual effort to extract, prepare and analyse the heterogeneous operational and maintenance data required
- Limited amount of available data is suitable for reliability and availability analysis
 - Diverging data quality and integrity

Data Integration & Data Quality

1 SELECT * FROM lhclog_cryo 2 WHERE variable_name = "QURCA_4_CV242.POSRST" 3 AND utc_timestamp BETWEEN "2015-01-14" AND "2015-03-14";

	variable_name	utc_timestamp 🔶	value 🍦
1	QURCA_4_CV242.POSRST	2015-03-05 00:00:08.830000000	57.819892883300781
2	QURCA_4_CV242.POSRST	2015-03-05 00:00:24.390000000	57.711101531982422
3	QURCA_4_CV242.POSRST	2015-03-05 00:00:39.310000000	57.654994964599609
4	QURCA_4_CV242.POSRST	2015-03-05 00:01:02.30000000	57.536369323730469
5	QURCA_4_CV242.POSRST	2015-03-05 00:01:12.880000000	57.52679443359375
6	QURCA_4_CV242.POSRST	2015-03-05 00:01:25.950000000	57.614585876464844
7	QURCA_4_CV242.POSRST	2015-03-05 00:01:43.370000000	57.610916137695312
8	QURCA_4_CV242.POSRST	2015-03-05 00:02:17	57.615604400634766
9	QURCA_4_CV242.POSRST	2015-03-05 00:02:30.070000000	57.721435546875

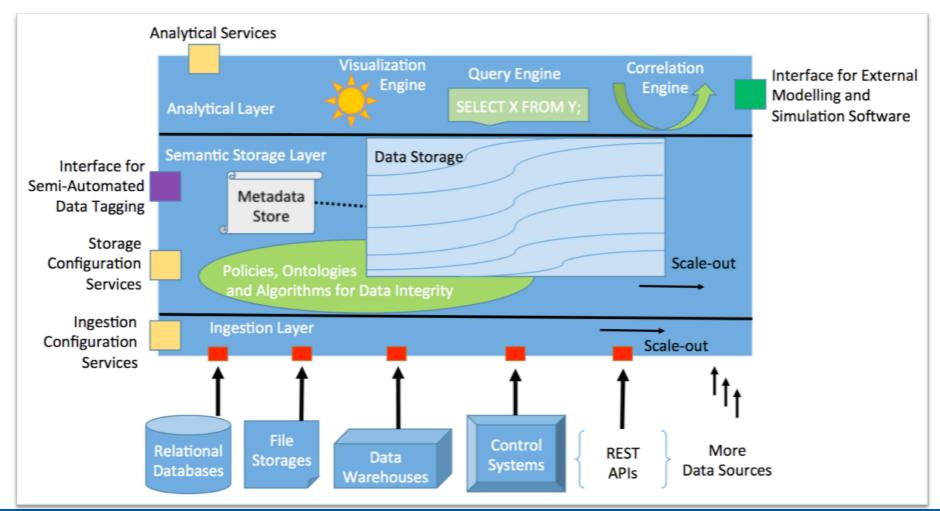
Structured data

Detail of Event 35048

Date	22-APR-2015 00:30			
System	LHCB			
Sub equipment	Compresseur			
Category	Reporting			
Severity	Problem solved			
Location / Site	production / P6			
Title	2CV210 doesn't keep its position			
Fault	Instrumentation failure			
Actions				
	09/03/2015.			
	Team P6 will check that.			
Author	SDEMAS			
Relation with EV	r.			
Comments for	this entry	Documents attached		

Date 🛦	Comments	Author
27-APR-2015 11:10	le WO a ete fait (numero 21863236)	MBARATIE

Unstructured data of low quality



Reliability and Availability Data Analytics Platform

- Data lake approach
- Integration of heterogeneous structured, semistructured and unstructured data
- Semi-automated data quality annotation

Reliability and Availability Data Analytics Platform: Proposed Architecture

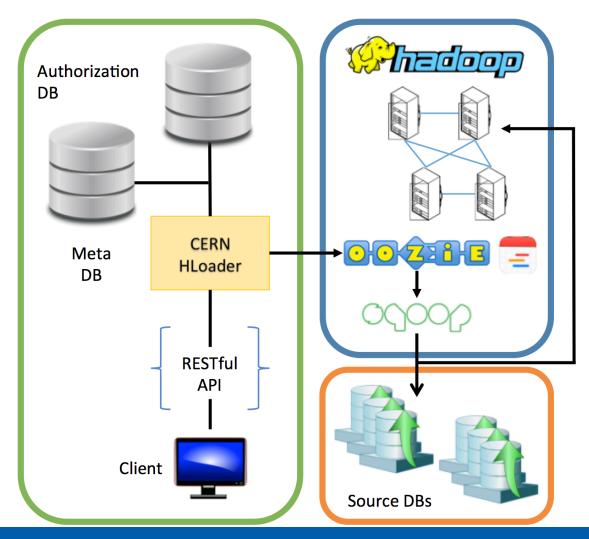
Big Data Infrastructure

Deployed Hadoop Cluster

- ✓ Shared-nothing architecture [3]
- ✓ HDFS enables flexible storage layer
- ✓ Large developer community

[3] Baranowski, Zbigniew, Luca Canali, and Eric Grancher. "Sequential data access with Oracle and Hadoop: a performance comparison." *Journal of Physics: Conference Series*. Vol. 513. No. 4. IOP Publishing, 2014.

Big Data Infrastructure: Software Frameworks Stack



CERN HLoader

- Built around Apache Sqoop & Apache Oozie
- Provides a REST API, exposing metadata on available source / target storage systems to authorized users
- Allows to submit one-off or re-occurring Sqoop jobs using Oozie workflow / coordinator apps

CERN HLoader: Architecture

Selected Use-Case

- Super Proton Synchrotron Beam Quality
- Direct injector to LHC
- Specify QoS for SPS beams
- Simulate injection scenarios and their impacts on LHC beam availability
- SPS BQM, OP eLogbook data

Conclusions & Future Work

- Data lake architecture meets the data management requirements of the FCC RAMS study
- CERN IT Hadoop service provides suitable infrastructure for the realization of the data lake
- Continued incremental development of the Reliability and Availability Data Analytics Platform
- Work on specified use cases (French electricity grid, power converters, ...)

Big Data Infrastructure: Hardware Specifications

- 14 nodes
- 64 GB of memory per node (total of 896 GB)
- 32 CPU cores (Ivy Bridge-EP 2,6 GHz) per node (total of 448 CPU cores)
- 48 x 4 TB disk space per node (total of 2,69 PB)

