
Optimizing ROOT's
Performance Using 

C++ Modules
Dr. Vassil Vassilev 

(presented by Philippe Canal) 
10.10.2016

Vassil’s work is entirely sponsored by USCMS and FNAL.

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

C++ Modules

Main goal is to enable scalable compilation of C++ code.

See Modules TS (n4592): http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
n4592.pdf

2

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Performance

Bjarne Stroustrup, creator of C++, at the ROOT
2015 workshop: “I’ve seen cases where C++
modules bring 100x compilation performance
improvements.”

Other C++ and C++ modules experts confirm
these facts in private exchanges.

3

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

C++ Modules in ROOT

Use the feature to reduce ROOT’s memory usage
and speed up interaction with ROOT’s interpreter.

4

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

C++ Compilation Model 
Translation Units

Each translation unit (TU) is independent. The
communication problem is resolved via name linkage.

// A.cpp

int pow2(int x) {
 return x*x;
}

// B.cpp
extern int pow2 (int x);
int main() {
 return pow(42);
}

5

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Linking And Compiler Copy-Paste 
Translation Units

TU communication is done via external names. In order
to minimize the errors header files are introduced.

// A.h
// #include <string> expands to ~19290 LOC
int pow2(int x);

// A.cpp
#include “A.h”
//expanded textually to
//int pow2(int x);
int pow2(int x) {
 return x*x;
}

// B.cpp
#include “A.h”
//expanded textually to
//int pow2(int x);
int main() {
 return pow(42);
}

6

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Translation Units to Module
Units

// A.h
// #include <string> expands to ~19290 LOC.
int pow2(int x);

// A.h module interface, aka modulemap.
module A {
 header A.h
 export * // The compiler exports pow2 as part of module A.
}

// A.cpp
import A.h // Uses the precompiled module file.
// import <string> doesn’t recompile ~20K LOC over and over.
int pow2(int x) {
 return x*x;
}

7

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

C++ Modules Help Finding
Issues in Your Code

The compilation units can reason about the code
more accurately in some cases, issuing useful
errors, warnings and hints.

8

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

C++ Modules Adoption
Adoption plan in ROOT:

1. Use the feature the way it was designed.  
Compile project’s codebase with -fmodules and recent clang.

2. Use the feature to optimize ROOT’s runtime.  
Provide rootcling support to build pcms and teach ROOT how to use them.

3. Once the feature is implemented it could be picked up by
CMS with relatively little (but > 0) amount of work.  
For the cost of having to deal with (currently harmless) inconsistencies in
your code, you will get 20% speed up

9

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Compile ROOT with C++
Modules

• Grab latest clang (from trunk)

• cmake -Dcxxmodules=On 
-DCMAKE_CXX_COMPILER=… 
 
configure --enable-cxxmodules 
--with-cxx=…

10

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Optimize ROOT’s Runtime

// ROOT prompt (no C++ Modules):
gSystem->Load("MyLib");
// => dlopen("MyLib.so");
// => cling->parse("1000s_of_fwd_decls.h");
MyLibClass<float> c; c.do();
// => cling->parse("#include <MyClass.h>");

// ROOT prompt (no C++ Modules):
gSystem->Load("MyLib");
// => dlopen("MyLib.so");
// => cling->mmap("MyLib.so.pcm");
MyLibClass<float> c; c.do();

User/Experiments’ code
has a lot of semantical

equivalents to this.
Forces ROOT’s interpreter to parse

headers related to MyLib (even when we
intend to use only tiny fraction of them).  

 
 This results in increased memory use

and slowdown.

C++ Modules-aware ROOT runtime will
lazily allocate memory only for what you

use and at the point of use!  
 

 Everything unused is mmaped.

11

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Preliminary Performance
Results

Due to the not-yet-complete status of (2), I’ve created a
close-to-reality test case based on standalone clang.

The -fmodules compilation yields 39% peak memory decrease. 
Using prebuilt modules reduces the compilation time by 21%.

This is backed up by compiler’s reports of much less allocations.

// T.cpp
#include "THtml.h"
#include "TTree.h"
#include "TLorentzVector.h"

THtml h;
TTree t;
TLorentzVector l;

12

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Towards Stability
Ensuring implementation reliability:

• Bi-weekly meeting with Google engineers to collaborate on the development of the
feature. HEP-specific requirements are represented by Vassil.

• LLVM modules self host buildbots

• http://lab.llvm.org:8011/buildslaves/modules-slave-1

• http://lab.llvm.org:8011/buildslaves/modules-slave-2 (requested by my LLVM
GSoC student and I), thanks to Richard Smith it is up and running on Google
Compute Engine. More to be added soon.

• Based on both configure and cmake, running respectively roottest and ctest.
Discovered already a few regressions in clang.

• Vassil was granted commit access everywhere in LLVM repositories.

• Vassil became a Bulgarian representative in the ISOCpp and he plans to participate
actively in the standardization process of the C++ Modules feature.

13

http://lab.llvm.org:8011/buildslaves/modules-slave-1
http://lab.llvm.org:8011/buildslaves/modules-slave-2

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

In Summary

• Still a lot of work ahead in clang, cling, ROOT and CMSSW.

• The work on the C++ Modules helped ROOT improve its codebase:

• Found a few issues some of them pretty severe (e.g. ill-formed
dictionaries).

• Removed a few bad practices (e.g. #define protected public).

• Revisit long forgotten code, which is was not tested and not
working (e.g. ROOT exception support, TException).

• Cleanup redundant or cyclic header dependencies (e.g. TMVA).

14

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

In Summary

• Vassil would like to thank USCMS for funding
this essential for ROOT piece of work.

• Vassil would like to thank Richard Smith from
Google who helps a lot and provides a lot of
wisdom.

15

Thank you!

Questions?

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

FAQ
Why does ROOT need modules?

• Modules are proven to reduce compilation and memory usage. It reduces
ROOT’s compile time on average by 21%.

Why we don’t wait for somebody else to implement them?

• This was the case last couple of years and it didn’t work. We have specific
use-cases, which hit a few corner cases. Extracting a minimalistic reproducer
is often the most difficult part, not the fix itself. The fixes for our use cases are
not a priority for clang’s community.

If we use C++ modules, are we bound to a certain compiler vendor/version?

• No, in a production ready environment PCMs will be provided by rootcling.

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

FAQ
Why do we need to include every header, on which we depend?

• Indirect includes are a bad practice. The non-module builds work because
of the specific include order (aka voodoo magic). The compiler is
extremely helpful in telling what is missing.

What is the size of the PCMs on disk?

• Hard to tell, because they are very configurable. Worst case scenario for
ROOT (a lot of duplications in PCM’s content) has 2441 PCMs ~ 700M in
total.

Are there performance numbers?

• Not yet, because they depend on completing stage 2 (slide 9). Preliminary
results show 39% memory decrease in close-to-reality scenario.

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

FAQ
Does the C++ modules implementation have bugs:

 Yes, and if you discover one please contact me.

Why we should build our software stack with modules?

• This will make the transition to ROOT’s C++ Modules-aware
environment easier and smoother.

• Gives different view of the code, exposing more bugs.
(Analogously, why do we build with more than one compiler).

• Speeds up the builds (for ROOT by 20-30%)

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Backup Slides

…

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

ROOT 6

• “Drop-in” replacement for ROOT 5

• Excessive memory use wrt ROOT 5 
True C++ interpreter comes at certain cost - it needs to know everything about your
library in order to use it.

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

ROOT’s Library Loading

root[0] gSystem->Load(“libExternal”);
root[1] do(); // must work, w/o #include

...

=> libExternal.so
Implicit #includes must be

lazy, at the time of use. C++
Modules are exactly

designed for this.

CMSSW has a lots of
semantical equivalents

to this.

// MyExternalS.h
struct MyExternalS {
 // members
};
// ...
MyExternalS* gS = new MyExternalS();

// Utils.h
#include “MyExternalS.h”
void do (MyExternalS* S = 0) {
 if (S = 0)
 S = gS;
 S->f();
}
// ...

Initial Key Objectives

10.10.2016, V. Vassilev, CHEP 2016, San Francisco

Finding Bugs with Modules
C++ Modules compilation discovered problems:

• Discovered a few bugs in ROOT itself. E.g.
class TNDArrayT : public TNDArray { /*...*/ ClassDef(TNDArray); }; // must be
ClassDef(TNDArrayT)

• ClassDefs of templated classes lead to non-conforming dictionaries:
A.h: template<class T> struct TMyClassT { ClassDef(MyClassT, 1); };
B.h: struct S { TMyClassT<int> var; };
G__: #include "A.h" // #1
 #include "B.h" // #2
 // Expanded contents of the ClassDef. E.g.
 template <> TClass *TMyClassT<int>::Class(){...}

• B.h forces an implicit instantiation of TMyClassT before the compiler can see the definitions of the ClassDef.
Namely, template <> TClass *TMyClassT<int>::Class(){} is seen after #2 when the compiler has instantiated it. C
++ 14.7.3/6 explains it as: "If a template, a member template or a member of a class template is explicitly
specialized then that specialization shall be declared before the first use of that specialization that would cause
an implicit instantiation to take place, in every translation unit in which such a use occurs; no diagnostic is
required.” Saying that what we do makes the TU ill-formed but no diagnostic is required.  
 
Modules are more strict in that respect and issue diagnostics. We need to implement a ClassDef macro which
inlines the contents, disallowing custom streamers covering 99.9% of the cases.

