
Optimizing ROOT's 
Performance Using 

C++ Modules
Dr. Vassil Vassilev 

(presented by Philippe Canal) 
10.10.2016

Vassil’s work is entirely sponsored by USCMS and FNAL.



10.10.2016, V. Vassilev, CHEP 2016, San Francisco 

Optimizing ROOT's Performance Using 
C++ Modules

Recompiling C++ gets faster using C++ Modules 
(ISO CPP Modules TS). ROOT is on its way to use 
benefit from the new technology, expecting: 

• faster (re-)compilation by 20-30%. 

• less memory use at runtime about 40%. 

2



10.10.2016, V. Vassilev, CHEP 2016, San Francisco 

ROOT’s Runtime

// ROOT prompt (no C++ Modules):
gSystem->Load("MyLib");
// => dlopen("MyLib.so");
//   => cling->parse("1000s_of_fwd_decls.h”);
MyLibClass<float> c; c.do();
// => cling->parse("#include <MyClass.h>");

// ROOT prompt (no C++ Modules):
gSystem->Load("MyLib");
// => dlopen("MyLib.so");
//   => cling->mmap("MyLib.so.pcm");
MyLibClass<float> c; c.do();

User/Experiments’ code 
has a lot of semantical 

equivalents to this.
Forces ROOT’s interpreter to parse 

headers related to MyLib (even when we 
intend to use only tiny fraction of them).  

 
 This results in increased memory use 

and slowdown.

C++ Modules-aware ROOT runtime will 
lazily allocate memory only for what you 

use and at the point of use!  
 

 Everything unused is mmaped.

3


