Optimizing ROOT's Performance
Using C++ Modules

Dr. Vassil Vassilev
(presented by Philippe Canal)

10.10.2016

Vassil’s work is entirely sponsored by USCMS and FNAL.

2= Fermilab

%

Optimizing ROOT's Performance Using
C++ Modules

Recompiling C++ gets faster using C++ Modules (ISO CPP Modules
T1S). ROOT is on its way to use benefit from the new technology,
expecting:

e faster (re-)compilation by 20-30%.

® |ess memory use at runtime apbout 40%.

ROQOT’s Runtime

User/Experiments’ code
has a lot of semantical

Forces ROOT’s interpreter to parse
headers related to MyLib (even when
we intend to use only tiny fraction of

equivalents to this.

// ROOT proWipt (no C++ Modules): them).
gSystem->Load("MyLib");
// => dlopen("MyLib.so"); This results in increased memory

// => cling->parse("1000s of fwd decls.h”);
MyLibClass<float> c¢; c.do();

// => cling->parse("#include <MyClass.h>");
= J

C++ Modules-aware ROOT runtime will
lazily allocate memory only for what you

4 use and at the point of use! h
// ROOT prompt (no C++ Modules):

gSystem->Load ("MyLib"); Everything unused is mmaped.

// => dlopen("MyLib.so");

// => cling->mmap('MyLib.so.pcm");
MyLibClass<float> c; c.do();

— _J

