
Performance of GeantV EM Physics Models

Soon Yung Jun (Fermilab)
for the GeantV Development Team

Oct. 11, 2016
CHEP16@San Francisco

Contents
• Introduction: Past, Present and Future
• Vectorization of EM Physics

– Motivation and goal
– Components
– Considerations (algorithm, design and performance)

• Computing Performance
• Summary

S.Y. Jun @CHEP162

Past – Death of Heroes
• Doom of vector (machines) in HEP more than two decades ago

– Many HEP applications are memory-bound with many branches and poorly scalable
• Era of Pentium: Microprocessors ruled HEP computing

– Experimental HEP programs have relied on high throughput computing (Grid)

S.Y. Jun @CHEP163

Microprocessor

Present – New Hardware Landscape
• Parallelism is omnipresent
• Where is HEP standing for utilizing vectors (SIMD), instruction level parallelism

(ILP), hardware threading, and so on?

• Challenges for High-luminosity LHC and future experimental HEP programs
– Ever-increasing demand for computing power, especially for simulation
– Disruptive hardware changes

• Opportunities
– New architectures (wider vector, many-integrated, massively-many cores)
– High performance computing (HPC) + High throughput computing (HTC)

S.Y. Jun @CHEP164

CommodityCPU SIMD ILP Threading

MAX 8 DP 4+ 4+

Typical HEP 1 ~0.5 1

Future - Return of Vectors
• GeantV: new demonstrator in HEP Detector Simulation

– Track-level-parallelism to leverage vectors and threads
– Locality and ILP (vector pipeline)
– Portable codes for the variety of computing models

• GeantV EM physics: confluent-parallel paths
– Develop new improved algorithms from the ground-up (New EM)
– Vectorize EM physics models explicitly for SIMD/SIMT (VecPhys à this talk)

S.Y. Jun @CHEP165

Fast
Simulation

Concurrent
scheduler

New EM
Physics

Hadron
Physics

Neutron

Tabulated
Physics VecGeom

VecCore

VecPhys

Utilities
I/O, Graphics

First Target - EM Physics
• A standalone CMS (geometry and a magnetic field map) simulation benchmark

– pythia pp à H à ZZ (Zà all decays) @ √𝑠 = 14 TeV and Geant4 10.2
• CPU allocation for physics: ~ 40% (physics processes + pRNG + math library)
• e± and 𝛾 major consumers of physics (~80%) è ~30% of the total CPU time

S.Y. Jun @CHEP166

Geometry
31%

Field Map
7%

Math
7%

Physics
Processes

28%

Random
Numbers

4%

Tracking
8%

Other
15%

• EM shower: {e±, g} cascades ß {Σ, '(')}
S (ds): macroscopic (differential) cross section

• 1) Determine distance before interaction

– Calculation on-the-fly (vectorizable, costly)
– Look-up cross-section table (gather)

• 2) Choose an interaction (process)
– Based on relative weights of processes

involved to S à conditional random decision
• 3) Simulate interaction (model): 𝑑𝜎/𝑑𝑥

– Involve conditional branches: not effectively
vectorizable à algorithmic change

EM Physics and Components of VecPhys

S.Y. Jun @CHEP167

𝑑 = −	
	log(𝑢)
Σ 	

Compton	Scattering:	Composition	and	rejection	

u(0,1)	=	random	numbers

Example of Algorithm Consideration: Sampling Method
• Replace composition and rejection methods by an alternative sampling method

1. Alias Method [1]
• Recast a N-discrete p.d.f to N equal probable events, each with likelihood 1/N = c
• Reproduce the original p.d.f by one trial sampling using alias and non-alias probability

2. Iterative shuffling: repeat try and unpack (overhead: reorganizing data)
3. Combination of vector operations and scalar loops (overhead: Amdahl’s)

S.Y. Jun @CHEP168

Design and Performance consideration
• Implement algorithms based on generic and portable components for SIMD/SIMT

– Template specialization and backend approach using VecCore [2]
– Static polymorphism for interfaces
– Data-centric (vector-friendly) code structure

• Other common techniques
– Mask, gather/scatter, SoA data organization

S.Y. Jun @CHEP169

Performance Measurement
• External vector libraries used (vector backend)

– Vc: portable, zero-overhead SIMD library for C++ [3]
– UME::SIMD: explicit vector library [4]

• Speedup for unit tests
– SIMD = Time(Scalar)/Time(Vector)
– SIMT = Time(Host)/Time(GPU) with Scalar

• Measurement:
– Input energy range: E [2MeV:20MeV] with exp(-E) spectrum
– Average time for n-repetitions as the number of tracks
– Note that performance of Geant4 depends on the energy range

• Verification of simulation results: see the talk by M. Bandieramonte,
“Validation of EM Physics Models for Parallel Computing Architectures
in the GeantV project” in Session 2.7

S.Y. Jun @CHEP1610

KNC (Xeon Phi 5110P 60 cores @1.013 GHz): MIC (8 vectors for double precision)
Simulation of interactions (sampling with alias methods)

• Scalar: Alias method • Vector: Vc Backend + MIC

Performance of EM Physics Models on Intel KNC

S.Y. Jun @CHEP1611

Al
go
rit
hm

	c
ha
ng
e

Ga
in
	fr
om

	v
ec
to
rs
	&
	m

ul
tip

le
	tr
ac
ks

• KNL (Xeon Phi 7120 64 cores @1.3GHz): AVX512 (8 vectors for double precision)
• K20 GPU (2496 cores @ 0.7GHz with blocks=26, threads) + Xeon E5 (1 cores, 2.6GHz)

• Vector: UME::SIMD backend+ AVX512

• Note: performance of UME::SIMD is underestimated as a
sequential pRNG is used for the backend

• CUDA: Scalar backend

• Maximum potential speedup(1-CPU core/2496-GPU cores)
would be ~ 300 = 2496*(0.7/2.6)*(Float/Double~0.5)

Performance of EM Physics Models on Intel KNL and NVidia Kepler (K20)

S.Y. Jun @CHEP1612

~3 ~30

Summary
• Demonstrated feasibility of implementing electromagnetic physics processes

and models for SIMD/SIMT architectures with common source codes
– Implemented vectorized algorithms for multiple sampling methods

• Evaluated computing performance on vector CPU and accelerators
– Tests demonstrate vector gains from SIMD of about 3.3-6.5 on KNC for 8-64 tracks
– Performance potential of x30 on GPU, but requires > 104 tracks per process

• Outlook / Ongoing
– Complete vector/GPU EM physics processes and models
– Integration in full GeantV simulation and optimization

S.Y. Jun @CHEP1613

The GeantV Development Team
G.Amadio (UNESP), A.Ananya (CERN), J.Apostolakis (CERN) , A.Arora (CERN),

M.Bandieramonte (CERN), A.Bhattacharyya (BARC), C.Bianchini (UNESP), R.Brun
(CERN), Ph.Canal (FNAL), F.Carminati (CERN), L.Duhem (intel), D.Elvira (FNAL),
A.Gheata (CERN), M.Gheata (CERN), I.Goulas (CERN), F.Hariri (CERN), R.Iope

(UNESP), S.Y.Jun (FNAL), H.Kumawat (BARC), G.Lima (FNAL), A.Mohanty (BARC),
T.Nikitina (CERN), M.Novak (CERN), W.Pokorski (CERN), A.Ribon (CERN), R.Sehgal

(BARC), O.Shadura (CERN), S.Vallecorsa (CERN), S.Wenzel (CERN), Y.Zhang (CERN)

References
1. Walker A J, ACM Trans. Math Software. 3 3, 253-256 (1977)
2. Apostolakis J et al., J. Phys.: Conf. Ser. 608 (2015) 012023
3. Vc, http://compeng.uni-frankfurt.de/?vc or https://github.com/VcDevel/Vc
4. UME::SIMD, https://bitbucket.org/edanor/umesimd

Backup Slides

S.Y. Jun @CHEP1615

Characteristics of HEP Particle Tracking
• Electrons are most populously produced
• Neutrons are long range in terms of the number of Geant4 steps

S.Y. Jun @CHEP1616

Preliminary Performance: AVX2 and CUDA
• Process selection and step length estimation with 3 photon processes

– Scalar: backend implementation with the a.k.a. Geant3-tracking
– Vector: Vc [2] with AVX2 on KNL
– GPU: Cuda on NVidia Tesla K20

S.Y. Jun @CHEP1617

Preliminary Performance: Alias Sampling Method – Vector
• Scalar/Vector

– SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
– AVX (Intel Xeon E5 – 2620 @ 2.00 GHz)

S.Y. Jun @CHEP1618

Performance: Alternative Sampling Method – Vector (SSE)
• Scalar/Vector

– SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2

• Hybrid Compton for a small bucket of tracks
– Alias [10keV,100MeV] + Rejection [100MeV,1TeV]

S.Y. Jun @CHEP1619

Performance: Alternative Sampling Methods - GPU
• GPU

– GPU: Nvidia Kepler (K20), 2496 cores @ 0.7 GHz - <<<26,192>>>
– Host: Intel Xeon E5 – 2650 @ 2.60 GHz

S.Y. Jun @CHEP1620

