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Past – Death of Heroes
• Doom of vector (machines) in HEP more than two decades ago

– Many HEP applications are memory-bound with many branches and poorly scalable
• Era of Pentium: Microprocessors ruled HEP computing

– Experimental HEP programs have relied on high throughput computing (Grid)
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Present – New Hardware Landscape 
• Parallelism is omnipresent
• Where is HEP standing for utilizing vectors (SIMD), instruction level parallelism 

(ILP), hardware threading, and so on?

• Challenges for High-luminosity LHC and future experimental HEP programs
– Ever-increasing demand for computing power, especially for simulation 
– Disruptive hardware changes

• Opportunities
– New architectures (wider vector, many-integrated, massively-many cores)
– High performance computing (HPC) + High throughput computing (HTC)
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Future - Return of Vectors
• GeantV: new demonstrator in HEP Detector Simulation

– Track-level-parallelism to leverage vectors and threads
– Locality and ILP (vector pipeline)
– Portable codes for the variety of computing models

• GeantV EM physics: confluent-parallel paths 
– Develop new improved algorithms from the ground-up (New EM)
– Vectorize EM physics models  explicitly for SIMD/SIMT (VecPhys à this talk) 
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First Target - EM Physics 
• A standalone CMS (geometry and a magnetic field map) simulation benchmark

– pythia pp à H à ZZ (Zà all decays) @ √𝑠 = 14 TeV and Geant4 10.2
• CPU allocation for physics: ~ 40% (physics processes + pRNG + math library)
• e± and 𝛾 major consumers of physics (~80%) è ~30% of the total CPU time
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• EM shower: {e±, g} cascades ß {Σ, '(')} 
S (ds): macroscopic (differential) cross section

• 1) Determine distance before interaction

– Calculation on-the-fly (vectorizable, costly)
– Look-up cross-section table (gather)

• 2) Choose an interaction (process)
– Based on relative weights of processes 

involved to S à conditional random decision
• 3) Simulate interaction (model): 𝑑𝜎/𝑑𝑥

– Involve conditional branches: not effectively 
vectorizable à algorithmic change 

EM Physics and Components of VecPhys
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Example of Algorithm Consideration: Sampling Method  
• Replace composition and rejection methods by an alternative sampling method

1. Alias Method [1]
• Recast a N-discrete p.d.f to N equal probable events, each with likelihood 1/N = c
• Reproduce the original p.d.f by one trial sampling using alias and non-alias probability

2. Iterative shuffling: repeat try and unpack (overhead: reorganizing data)
3. Combination of vector operations and scalar loops (overhead: Amdahl’s)
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Design and Performance consideration 
• Implement algorithms based on generic and portable components for SIMD/SIMT

– Template specialization and backend approach using VecCore [2]
– Static polymorphism for interfaces
– Data-centric (vector-friendly) code structure

• Other common techniques 
– Mask, gather/scatter, SoA data organization

S.Y. Jun @CHEP169



Performance Measurement 
• External vector libraries used (vector backend)

– Vc: portable, zero-overhead SIMD library for C++ [3]
– UME::SIMD: explicit vector library [4]

• Speedup for unit tests
– SIMD = Time(Scalar)/Time(Vector)
– SIMT = Time(Host)/Time(GPU) with Scalar

• Measurement:
– Input energy range: E [2MeV:20MeV] with exp(-E) spectrum
– Average time for n-repetitions as the number of tracks   
– Note that performance of Geant4 depends on the energy range

• Verification of simulation results: see the talk by M. Bandieramonte,       
“Validation of EM Physics Models for Parallel Computing Architectures 
in the GeantV project” in  Session 2.7
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KNC (Xeon Phi 5110P 60 cores @1.013 GHz):  MIC (8 vectors for double precision)
Simulation of interactions (sampling with alias methods)  

• Scalar: Alias method • Vector: Vc Backend + MIC

Performance of EM Physics Models on Intel KNC

S.Y. Jun @CHEP1611

Al
go
rit
hm

	c
ha
ng
e

Ga
in
	fr
om

	v
ec
to
rs
	&
	m

ul
tip

le
	tr
ac
ks



• KNL (Xeon Phi 7120 64 cores @1.3GHz):  AVX512 (8 vectors for double precision)
• K20 GPU (2496 cores @ 0.7GHz  with blocks=26, threads) + Xeon E5 (1 cores, 2.6GHz) 

• Vector: UME::SIMD backend+ AVX512

• Note: performance of UME::SIMD is underestimated as a 
sequential pRNG is used for the backend

• CUDA: Scalar backend

• Maximum potential speedup(1-CPU core/2496-GPU cores) 
would be ~ 300 = 2496*(0.7/2.6)*(Float/Double~0.5) 

Performance of EM Physics Models on Intel KNL and NVidia Kepler (K20)
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Summary
• Demonstrated feasibility of implementing electromagnetic physics processes 

and models for SIMD/SIMT architectures with common source codes
– Implemented vectorized algorithms for multiple sampling methods

• Evaluated computing performance on vector CPU and accelerators
– Tests demonstrate vector gains from SIMD of about 3.3-6.5 on KNC for 8-64 tracks
– Performance potential of x30 on GPU, but requires > 104 tracks per process

• Outlook / Ongoing
– Complete vector/GPU EM physics processes and models
– Integration in full GeantV simulation and optimization
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Characteristics of HEP Particle Tracking
• Electrons are most populously produced 
• Neutrons are long range in terms of the number of Geant4 steps 
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Preliminary Performance: AVX2 and CUDA
• Process selection and step length estimation with 3 photon processes 

– Scalar: backend implementation with the a.k.a. Geant3-tracking 
– Vector: Vc [2] with AVX2 on KNL
– GPU: Cuda on NVidia Tesla K20
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Preliminary Performance: Alias Sampling Method – Vector
• Scalar/Vector 

– SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2
– AVX (Intel Xeon E5 – 2620 @ 2.00 GHz) 
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Performance: Alternative Sampling Method – Vector (SSE)
• Scalar/Vector 

– SSE (Intel Xeon E5 – 2650 @ 2.60 GHz) – SSE2

• Hybrid Compton for a small bucket of tracks
– Alias [10keV,100MeV] + Rejection [100MeV,1TeV]
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Performance: Alternative Sampling Methods - GPU
• GPU

– GPU: Nvidia Kepler (K20), 2496 cores @ 0.7 GHz - <<<26,192>>> 
– Host: Intel Xeon E5 – 2650 @ 2.60 GHz
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