
Multi-threaded Geant4 on Intel Many
Integrated Core architectures

Andrea Dotti (adotti@slac.stanford.edu) ; SLAC/SD/EPP/Computing
Makoto Asai (SLAC), Steven A. Farrell (LBNL)

CHEP2016 – San Francisco, 8-14 October 2016

http://www.geant4.org

mailto:adotti@slac.stanford.edu
http://www.geant4.org/

Outlook

Introduction: parallelism in Geant4

Results: memory usage, scalability, KNC vs KNL

Scaling at very large systems: integration w/ MPI, Geant4 at
extreme scales

Recent Geant4 Improvements

3

Parallelism in Geant4: Master/Worker model

Version 10.0 (Dec. 2013)
• Implement correct MT

behavior (remove race
conditions)

• Memory reduction from
geometry and physics

Version 10.0 (Dec. 2013)
• Implement correct MT

behavior (remove race
conditions)

• Memory reduction from
geometry and physics

Version 10.1 (Dec. 2014)
• Improve migration some

components (GPS, RDM,
Vis)

• Obtain further x2 memory
reduction

Version 10.1 (Dec. 2014)
• Improve migration some

components (GPS, RDM,
Vis)

• Obtain further x2 memory
reduction

Version 10.2 (Dec. 2015)
• Finalize VIS module
• Simplify integration of G4
with MPI and TBB

Version 10.2 (Dec. 2015)
• Finalize VIS module
• Simplify integration of G4
with MPI and TBB

Since Geant4 Version 10.0 (December 2013): introduced
event level parallelism.

Driving forces:
• maintain and improve physics quality
• minimize user code changes
• keep approach simple
 (physicists ≠ computing scientists)

Design/prototyping phases started in 2010-2012

Not an endpoint but an important
milestone for the future Geant4

Expecting more features released in the
next years

Geant4 Strategy for parallelism

CoreCore

CoreCore

NodeNode

User InterfaceUser Interface ApplicationApplication

MPIMPI

threadthread

Algorithms
improvements

Algorithms
improvements

threadthread

Algorithms
improvements

Algorithms
improvements

MPIMPI

threadthread

Algorithms
improvements

Algorithms
improvements

threadthread

Algorithms
improvements

Algorithms
improvementsWe provide defaults for all level of parallelism, users can overwrite with experiment framework

specific technologies
E.g. LHC experiments: GRID instead of MPI, TBB instead of pthread

Geant4 Strategy for parallelism

CoreCore

SocketSocket

NodeNode

User InterfaceUser Interface ApplicationApplication

MPIMPI

threadthread

Algorithms
improvements

Algorithms
improvements

threadthread

Algorithms
improvements

Algorithms
improvements

MPIMPI

threadthread

Algorithms
improvements

Algorithms
improvements

threadthread

Algorithms
improvements

Algorithms
improvementsWe provide defaults for all level of parallelism, users can overwrite with experiment framework

specific technologies
E.g. LHC experiments: GRID instead of MPI, TBB instead of pthread

Our new general paper
J. Allison et al. “Recent Developments in Geant4”
NIM A 835, Vol 835, 1-Nov.2016, pp. 186-225
Also includes details on Geant4 multi-threading capabilities

http://www.sciencedirect.com/science/article/pii/S0168900216306957

Results

Memory reduction
Version Initial memory Memory/thread

9.6 (no MT) 113 MB (113 MB)

10.0.p02 (no MT) 170 MB (170 MB)

10.0.p02 151 MB 28 MB

10.3.beta 148 MB 9 MB

Memory limit for
Intel Xeon Phi 3120A

Geant4 MT design principle: share
between threads read-only data
(geometry, physics tables): lock-
free event loop

Goal: substantially reduce
memory usage w.r.t. pure multi-
process application (e.g. MPI)

Recent campaign to reduce more
than a factor 2 memory use in MT
mode

Recent feedback from CMS: full
CMSSW sw stack of ttbar events:
~200MB/thread

Includes all user-code
Needs KNL for moderate/large
number of threads

HepExpMT benchamrk: Simplified CMS geometry (via GDML), uniform B-Field, 50 GeV π- w/ FTFP_BERT

https://agenda.infn.it/contributionDisplay.py?contribId=107&confId=11196

Linearity speedup

• Number of events/second is the most important
metric for users

• Very good linearity (>93%) with the number of
physical cores available

• Benefits from hyper-threading: ~30%

• Verified for different types of applications:
•Medical physics applications
•HEP experiments

KNL 7210, quadrant mode, MCDRAM only

Strong Scaling

Access to KNL processor provided by Colfax International

HepExpMT benchmark: Simplified CMS geometry (via GDML), uniform B-Field, 50 GeV π- w/ FTFP_BERT

KNL vs KNC
● We provide support for running G4 on KNC, https://goo.gl/qEFo6u ,

will update for KNL
● Due to x86 binary compatibility, work-flow is tremendously simplified
– remember no explicit vectorization in Geant4!

System Time to completion (5k events)

Xeon E5-2620 @ 2.1 GHz (12x2 cores) 570 s

KNC (31s1P) @ 1.0 GHz (228 threads) 1000 s

KNL (7210, quadrant mode, MCDRAM only)
@ 1.3 GHz (255 threads)

378 s (x3 improvement w.r.t. KNC)

KNL (shared library) 480 s (25% slower)

Single core KNL slowdown w.r.t. host: x4

https://goo.gl/qEFo6u

Scaling w/ MPI

MPI and Geant4

Rank#0Rank#0

Rank#1Rank#1

Thread 1Thread 1

Thread 2Thread 2

Rank#2Rank#2

Thread 1Thread 1

Thread 2Thread 2

Rank#3Rank#3

Thread 1Thread 1

Thread 2Thread 2

Thread 3Thread 3

Rank#0 broadcasts
UI commands and
RNG seeds
Workers send back
results for
merging:
histograms,
ntuples, scorers

Geant4 applications from MPI point of view

G4Application
Rank #

G4Application
Rank #

UI Commands / macro file

RNG Seed

Data Base files

g4analsyis
histos

g4analysis
ntuple files

user-defined
G4Run

Visualization

command
line scorers

Geant4 applications from MPI point of view

G4Application
Rank #

G4Application
Rank #

UI Commands / macro file

RNG Seed

Data Base files

g4analsyis
histos

g4analysis
ntuple files

user-defined
G4Run

Visualization

command
line scorers

MPI “wrapper” exist, I/O merged

Geant4 applications from MPI point of view

G4Application
Rank #

G4Application
Rank #

UI Commands / macro file

RNG Seed

Data Base files

g4analsyis
histos

g4analysis
ntuple files

user-defined
G4Run

Visualization

command
line scorers

MPI “wrapper” exist, I/O merged MPI “wrapper” planned (2017+)

System:

Intel E5-2600 @ 2.2GHz (8C/16T)

2 Xeon Phi cards model 3120A (57C/228T)

MPI application started on
host and on two MICs: a
small cluster in your
desktop

Host Host + 1 card Host + 2 cards
0

1000

2000

3000

4000

5000

6000

7000

evts/sec

~
 ×

3
 s

p
e
e
d
u
p

“Medical” benchmark: proton 200 MeV on water phantom

Scaling to multiple systems

Preparing for Next Generation SC

KNL target systems: Theta@ANL, Cory@NERSC

Currently:
– Testing Geant4 on single KNL systems
– Test Geant4 on very large partitions on existing systems

Testing Geant4 at Mira@ANL (BlueGene/Q) with up to ~¼ million
threads

Scaling up to 64k threads, above that hit scaling limit
– We believe this is due to limitations in I/O, need to aggregate access to

disk, cout/cerr
– In the work plan for next years

We are on the good path to scale to O(106) threads with simple
applications if we manage to address I/O

Courtesy of T. LeCompte ALCF (at ANL) 1 node = 16 BlueGene/Q cores @ 1.6 GHz

Preliminary

mailto:Cory@NERSC
https://agenda.infn.it/contributionDisplay.py?contribId=9&confId=11196

Preparing for Next Generation SC

KNL target systems: Theta@ANL, Cory@NERSC

Currently:
– Testing Geant4 on single KNL systems
– Test Geant4 on very large partitions on existing systems

Testing Geant4 at Mira@ANL (BlueGene/Q) with up to ~¼ million
threads

Scaling up to 64k threads, above that hit scaling limit
– We believe this is due to limitations in I/O, need to aggregate access to

disk, cout/cerr
– In the work plan for next years

We are on the good path to scale to O(106) threads with simple
applications if we manage to address I/O

Courtesy of T. LeCompte ALCF (at ANL)

 Vesta (x2 I/O nodes w.r.t. Mira)
◊ Mira

1 node = 16 BlueGene/Q cores @ 1.6 GHz

Preliminary

mailto:Cory@NERSC
https://agenda.infn.it/contributionDisplay.py?contribId=9&confId=11196

Conclusions

Summary
Geant4 is being run regularly on MIC systems

– Recent testing on KNL shows:
● Extremely simplified work-flow
● Factor 3 performance increase w.r.t. KNC

Recent developments on adding MPI support (mostly to the benefit of smaller experiments)
– Mixed MPI+MT jobs show best performances
– Good performance up to large number of total threads O(10k)
– First preliminary tests at SuperComputer scale shows that I/O becomes the dominant limiting factor at O(100k) total threads. Note that this can be only

partially in Geant4 (strong interactions with framework and persistency systems)

Getting ready for next generation SuperComputers is a challenge, but Geant4 design and planned improvements should allows
scaling to very large number of threads

For the longer term plans we need to improve the algorithms performances (vectorization and more important memory access):
– Use of modern sub-components is planned (e.g. VecGeom)
– Review of critical algorithms (e.g. new EM models)

21

HepExpMT
Testing done with a standalone application:

– To be used as a “public candle” for Geant4 performance measurement
– Some “advanced” features (e.g. MPI) and I/O testing

To simplify application compilation a script is provided that:
1) Downloads G4
2) Configure G4 and Application
3) Compiles G4 and Application in a coherent environment

Check it out at: https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4HepExpMTBenchmark

Backup

Stating the physics problem
The study of the interaction of radiation (e.g.
particles, x-rays) with matter has applications in
several scientific areas:

Basic research (e.g. at accelerators to discover
new phenomena)

Medical imaging (e.g. x-rays)

Medical treatment (e.g. radio-therapy)

Industrial (e.g. energy production, shielding)
Essential tools in these fields are simulation
programs. The most precise are based on Monte
Carlo techniques
Several codes exists: Geant4 is one of them, the
most widely adopted

Image courtesy of CERN
http://cern.ch

Physics Requirements

Kernel I - M.Asai (SLAC) 25

S. Agostinelli et al.

Geant4: a simulation toolkit
NIM A, vol. 506, no. 3, pp. 250-303, 2003

J. Allison et al.

Geant4 Developments and Applications
IEEE Trans. Nucl. Sci., vol. 53, no. 1, pp. 270-278, 2006

http://www.geant4.org/

26

Options comparison: old results

Geant4 Multi Threading capabilities

2
7

28

Thread Local Storage
• Each (parallel) program has

sequential components
• Protect access to concurrent

resources
• Simplest solution: use mutex/lock
• TLS: each thread has its own object

(no need to lock)
• Supported by all modern

compilers
• “just” add __thread to variables
__thread int value = 1;
• Improved support in C++11

standard
• Drawback: increased memory

usage and small cpu penalty
(currently 1%), only simple data
types for static/global variables can
be made TLS

NB: results obtained on toy application, not real G4

The splic-class mechanism concept
• Thread-safety implemented via Thread Local Storage
• “Split-class” mechanism: reduce memory consumption
• Read-only part of most memory consuming objects shared between

thread
• Geometry, Physics Tables
• Rest is thread-private

2
9

	Slide 1
	Slide 2
	Kernel improvements
	Parallelism in Geant4: Master/Worker model
	What is next
	Slide 6
	Slide 7
	Step 1: demonstrate memory reduction
	Step 2: demonstrate speed-up w/ multi-threading only
	Slide 10
	Slide 11
	MPI and Geant4
	Geant4 applications from MPI point of view
	Slide 14
	Slide 15
	An interesting possibility…
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Options comparison: update expected
	Geant4 Multi Threading capabilities
	Thread Local Storage
	The splic-class mechanism concept

