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Idea

Big Data technologies have proven to be very useful for storage, visualization and analysis of  the 
ATLAS distributed computing (meta)data. If we could apply the same technologies on real/MC data, 
we could:

● Do quick investigations without writing any code, directly in a web browser
● Deliver data to users:

○ Only events passing cuts and only variables user needs. 
○ No need for experiment specific libraries - make it easier to use machine learning tools 

like Spark, Jupyter, R, SciPy, Caffe, TensorFlow. This would simplify Machine Learning 
Challenges:  Higgs Boson ML Challenge, the Tracking challenge, ...

● Serve as a backend to:
○ Event Viewers (VP1, ATLANTIS, ATLASrift,...), make them platform independent
○ All kinds of education and outreach tools

The question is would the same technology map well on event data? Would event data structure map 
correctly, would data size be acceptable, what indexing and retrieval rate could we achieve? 
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Related work
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EventIndex - a complete catalogue of all ATLAS events.
● Collection:ActiveMQ, storage:Hadoop, indexing:HBase, custom WebUI, CLI.
● ~1300 B/event. Event identifier, trigger pattern, hit counts, pointers to the event in all processing 

stages.
● Used for: event picking, event skimming, Panda event service
● Contains ~ 40*109 data and 25*109 MC event records. Searches at 10ms/event.

Open data - http://atlas-opendata.web.cern.ch/
● Provides access to real and simulated data, and educational tools, to the public
● Three levels of sophistication (simple visualizations, Jupyter based analysis, full set of analysis 

tools to download - documentation, datasets, software, VMs)

Lukas Heinrich’s  project Aretha  https://www.youtube.com/watch?v=S5SkTXhdCng
● Streams generated HepMC data from SHERPA, Herwig, MadGraph (locally or in cloud) to ZeroMQ
● Runs  ZeroMQ data collector, Elasticsearch, Kibana all in docker 
● Makes plots while jobs running, validate data using eg. Rivet

http://atlas-opendata.web.cern.ch/
https://www.youtube.com/watch?v=S5SkTXhdCng


Analytics platform
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ATLAS distributed computing analytics platform 

There is a number of possible workflows that would work 
for storing and processing event data while using already 
existing ADC analytics platform:

● Store data in Hadoop (avro) process using pig or 
Spark. Not interactive, not a data access solution. 

● Store in HDF5, use Spark. Performant analysis, 
does not solve data access. 

● ...

Our selected workflow:
● Data indexed in Elasticsearch
● Fast visualization in Kibana
● Open data access through Elasticsearch REST 

API
● Data analysis on a co-located Jupyter cluster



Elasticsearch cluster
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5 data + 3 head nodes 

E5-2620v4, 64GB RAM, 4x800 GB SSD, 10Gbps NIC

Used for ATLAS Distributed Computing analytics

Quite high base load

Elasticsearch is a distributed, real-time data and analytics, high availability open source search engine built on top of 
Apache Lucene. Works with structured JSON documents, schema free, by default all fields are indexed, data are 
compressed.

 



Jupyter
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At University of Chicago
• Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz x2 
• Tesla K20c x2
• 128GB RAM , 4.5TB RAID-5 for /scratch, 1TB 

RAID-1 for /
• If needed one more machine with 2 x Xeon Phi 

(64 core)
• Simple universal user, pass authentication, 

notebooks automatically checked in a git repo. 

At CERN
• SWAN (Service for Web based Analysis)
• Currently in Beta
• Code in CERNBox

● Most of ML libraries installed, if there is 
anything missing we can easily add it.

● Local to Elasticsearch
● Learn from codes of others. See what 

was already done.

Advantages:

● Managed by CERN
● Your notebooks are yours only
● One can have the same environment anywhere you 

have CVMFS, just do:
setupATLAS

lsetup "lcgenv -p LCG_85swan3 x86_64-slc6-gcc49-opt ROOT rootpy ..."



ATLAS Data Formats
● Consider only user oriented DxAOD format.
● xAOD is a common centrally produced data format ~PB size.
● DxAODs are ~TB scale derivations, centrally produced, skimmed/slimed 

and customized for different physics groups use.
● Mini xAODs or flat n-tuples are subgroup specific and not considered here 

(~GB scale) .
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Type Event size
[kb/event] Branches

DAOD data15_13TeV 30 647

AOD data15_13TeV 184 1742

DAOD mc15_13TeV 25 999

AOD mc15_13TeV 216 2512



Mapping events
We used root_numpy and rootpy.

We create document mapping template

● One per data format
● Describes event  in terms of native 

Elasticsearch types and structures
● Tree is not very deep (5 levels) but 

needs care to get it right ( array vs 
object vs nested object)

There is no need to index all of the variables, 
we’ll still be able to deliver them, just not 
search/filter on them. Possible large 
improvement on data size (not used for this 
study).

There is a limit on 50 nested objects / document.
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*Branch  :EventInfoAux.                                    
*Entries :     6752 : BranchElement (see below) 
*............................................................................*
*Br    2 :EventInfoAux.xAOD::AuxInfoBase : BASE                      
*Entries :     6752 : Total  Size=     529349 bytes  File Size  =      21915
*Baskets :       17 : Basket Size=     104448 bytes  Compression=  24.12
*............................................................................*
*Br    3 :EventInfoAux.runNumber : UInt_t                                    *
*Entries :     6752 : Total  Size=      29278 bytes  File Size  =       2124
*Baskets :       16 : Basket Size=       5120 bytes  Compression=  13.46

float32 AntiKt4EMTopoJetsAuxDyn Split23
[ 570.70159912  184.66441345]
float32 AntiKt4EMTopoJetsAuxDyn Split34
[ 210.48747253  159.41931152]
int32 AntiKt4EMTopoJetsAuxDyn ConstituentScale
[0 0]
object AntiKt4EMTopoJetsAuxDyn SumPtTrkPt1000
[ array([ 2215.11962891,     0.        ,  1192.48486328,  
1890.73132324,
           0.        ,     0.        ,     0.        ,     0.        ,
           0.        ,     0.        ,     0.        ,     0.        ,
           0.        ,     0.        ], dtype=float32)
 array([ 5278.20996094,     0.        ,     0.        ,  2568.26782227,

"EventInfoAuxDyn": {
  "type":"object",
  "properties":{
    "HLT_xe70_mht":{"type":"boolean"},
    "HLT_xe70_tc_lcw":{"type":"boolean"},
    "HLT_xe80":{"type":"boolean"},
    "HLT_xe80_mht":{"type":"boolean"},
    "HLT_xe80_tc_lcw":{"type":"boolean"},
    "mpx":{"type":"double"},
    "name":{"type":"string","index":"not_analyzed"},
  }
},

ROOT structure

numpy objects

Mapping template

Indexed event



Indexing events

We indexed di-jet events xAODs, and DxAODs from DAOD_EXOT2 derivation. 

Used indexing method proved rather inefficient (parsing all the event structure for all events), also process 
was not tuned (batch size, etc).   
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type
Event size 

Indexing rate [Hz]
[kb/event] increase

DAOD data15_13TeV 146 5.4 21

AOD data15_13TeV 377 2.0 8

DAOD mc15_13TeV 116 4.6 19

AOD mc15_13TeV 385 1.8 9



Data visualizations
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Kibana can be used to do quick visualizations. 
Use filter bar to make cuts. 
Define additional derived variables. 

Good 
Visualizations can be organized and saved in 
nice reusable dashboards.  
As all computation are distributed over all the 
ES nodes, visualizations are very fast even 
with billions of events.

Bad 
Visualizations not made with scientists in mind.
Only simple operations supported.  



Filtering and aggregations
Streaming full events:

"query" : {   "match_all": {} }

To return only some variables add:

"fields" : ["AntiKt4EMTopoJetsAuxDyn.ActiveArea", ...],

To select on a variable (cut):

"query" : { "term" : { "EventInfoAuxDyn.HLT_xe80" : True } }

Complex conditions (must, must_not, should, filter):

'bool':{

    'must':[

        {"term"  : { "EventInfoAuxDyn.HLT_xe80" : False }},

        {"range" : { "AntiKt4EMTopoJetsAuxDyn.GhostAntiKt2TrackJetCount" : { "gt": 2 } } },

        {"range" : { "AntiKt4LCTopoJetsAuxDyn.JetEMScaleMomentum_m": { "gt": 10000 } } },

        {"exists" :{ "field" : "HLT_xAOD__JetContainer_a4tcemsubjesFSAuxDyn.HECQuality" 
}}
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Aggregations (cut and count analysis), very 
powerful, fast, can be nested. In our tests all are 
sub-second duration operations.

Simple count:
 "aggs": {   "docs": { "value_count": { "field": "_type" }  } }

Returning stats:
"aggs": {   "ptStats": { "stats": { "field": "TrackPt" }  } }

Stats in bins:
"aggs": {   "ptStats": { "histogram": { 

"field": "TrackPt",
“Interval” : 50 

}  }  }



Skimming & slimming performance
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Read test

DAOD 
data15_13TeV

AOD 
data15_13TeV

DAOD
mc15_13TeV

AOD
mc15_13TeV

Rate 
[Hz]

CPU* 
[%]

Rate 
[Hz]

CPU 
[%]

Rate 
[Hz]

CPU 
[%]

Rate 
[Hz]

CPU 
[%]

1 variable from all events 486 1 264 1 520 1 225 1

10 variables from all events 453 3 263 1 491 3 227 1

10 variables from
events passing cut ( ~2 % events)

606 / 32 
kHz 22 251 /  

13 kHz 10 971 /   
50 kHz 15 226 / 

11 kHz 20

Full events passing cut ( ~2% events) 161 / 
6.3 kHZ 77 35 /   

1.8 kHz 84 121 /  
6.2 kHz 80 32 /  

1.5 kHz 82

Streaming all full events 116 86 39 87 120 88 31 86

Selections are basically free, cost is in data transfer back to client and client parsing JSON.
  

*client CPU usage.



Data modifications

Simple fixes can be done by:

● Adding corrected variable
● Defining “scripted” variables

Re-calibration from existing data 
would be performed by a central batch 
re-indexing.

Any kind of reweighting can be done 
by defining custom scoring function. 
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Weighting:

"script_score": {
    "script": { 
        "lang": “lang”,
        “params”:  { 
             "param1": value1,
             “param2” :value2 
         } ,
         “Inline”:”_score * doc[‘orig_pt’].value / 
pow(param1, param2)”
    }  
}



Conclusions

● Feasibility of actual event indexing is tested
● Input/output rates are reasonable, increase in data volume is at the expected level.
● All kinds of optimizations are possible

○ Indexing directly from ATLAS analysis framework
○ Optimized mapping
○ Compressed responses

● Visualizations, skimming and sliming are very fast, very convenient for cut flow 
type analyses

● Full data retrieval while moderately slow, consumes too much CPU in parsing 
JSON returned.   

● Elasticsearch is easy to scale up to a data center level (~ few hundreds of servers), 
bigger than that one need to add “tribe” nodes.
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