

Design and Execution of make-like distributed Analyses based on Spotify's Pipelining Package Luigi

> make

Marcel Rieger*,
Martin Erdmann, Benjamin Fischer, Robert Fischer

Landscape of Analyses in HEP

- Scale: measure of resource consumption and amount of data
- Complexity: measure of granularity and inhomogeneity of workloads
- Future analyses likely to be large *and* complex, bottlenecks:
 - Entangled and undocumented structure & requirements between workloads, only exists in the "physicist's head"
 - Bookkeeping of code, data, versions, ...
 - Manual execution and steering of jobs
 - Error-prone & time-consuming

→ Analysis workflow management essential for future measurements!

Abstraction: HEP Analysis

- Workflow, decomposable into particular workloads
- Workloads related to each other by common interface
 - → In/outputs define directed data flow
- Alter default behavior via parameters
- Computing resources
 - Run location (CPU, GPU, grid, ...)
 - Storage location (local, dCache, ...)
- Software environment
- Collaborative development and processing
- Reproducible intermediate and final results

→ Large overlap with features of workflow systems

Comparison of Workflow Management Systems (WMS)

	Existing WMS e.g. MC Management	Generic Analysis WMS	
Development Process	final objective known in advance	iterative, final composition a priori unknown	
Workflow Structure	chain structure, mostly one-dimensional	tree structure, arbitrarily branched	
Evolution	static over time, recurrent execution	dynamic, fast R&D cycles	
Infrastructure	specially tailored, e.g. storage systems, DBs	incorporate existing, quickly adapt to changes	
Applicability	tuned to particular use case	flexible, able to model every possible workflow	

- → Existing WMS highly specialized for designated use case
- → Requirements for HEP analyses mostly orthogonal

→ Toolbox for flexible analysis conception

Typical analysis *tree*:

Typical MC *chain*:

- Python package for building complex pipelines
- Development started at Spotify, now open-source and community driven

- 1. Workloads defined as *Task* classes
- 2. Tasks *require* other tasks & output *Targets*
- 3. Parameters customize and control task behavior
- Task execution → builds up dependency tree,
 only computes what is necessary
- Web interface, error handling, command line tools, collaborative features, ...
 - → Suitable tool to manage complexity

- Python package for building complex pipelines
- Development started at Spotify, now open-source and community driven

- 1. Workloads defined as *Task* classes
- 2. Tasks *require* other tasks & output *Targets*
- 3. Parameters customize and control task behavior
- Task execution → builds up dependency tree,
 only computes what is necessary
- Web interface, error handling, command line tools, collaborative features, ...
 - → Suitable tool to manage complexity

- Python package for building complex pipelines
- Development started at Spotify, now open-source and community driven

- 1. Workloads defined as *Task* classes
- 2. Tasks *require* other tasks & output *Targets*
- 3. Parameters customize and control task behavior
- Task execution → builds up dependency tree,
 only computes what is necessary
- Web interface, error handling, command line tools, collaborative features, ...
 - → Suitable tool to manage complexity

- Python package for building complex pipelines
- Development started at Spotify, now open-source and community driven

- 1. Workloads defined as *Task* classes
- 2. Tasks *require* other tasks & output *Targets*
- 3. Parameters customize and control task behavior
- Task execution → builds up dependency tree,
 only computes what is necessary
- Web interface, error handling, command line tools, collaborative features, ...
 - → Suitable tool to manage complexity

- Python package for building complex pipelines
- Development started at Spotify, now open-source and community driven

- 1. Workloads defined as *Task* classes
- 2. Tasks *require* other tasks & output *Targets*
- 3. Parameters customize and control task behavior
- Task execution → builds up dependency tree,
 only computes what is necessary
- Web interface, error handling, command line tools, collaborative features, ...
 - → Suitable tool to manage complexity

Adding Scalability: Luigi and the WLCG

- Example for implementation of abstract run & storage locations
- 1. Submit tasks as jobs to computing elements
 - Simple usage, transparent Luigi integration
 - Actual run location (local, CE) not hard-coded, decision made at execution time
 - Mandatory features like pilot jobs, automatic resubmission, or batch submission
- 2. Store targets on *storage elements* (e.g. dCache)
 - Built on top of GFAL2 Python bindings, transparent Luigi integration
 - Mandatory features like automatic retries, local caching, or batch transfers

GFAL2

→ WLCG implementations provide scalability in the HEP context

Adding Scalability: Luigi and the WLCG

• Example for implementation of abstract run & storage locations

GFAL2

- 1. Submit tasks as jobs to computing elements
 - Simple usage, transparent Luigi integration
 - Actual run location (local, CE) not hard-coded, decision made at execution time
 - Mandatory features like pilot jobs, automatic resubmission, or batch submission
- 2. Store targets on *storage elements* (e.g. dCache)
 - Built on top of GFAL2 Python bindings, transparent Luigi integration
 - Mandatory features like automatic retries, local caching, or batch transfers

```
pyl Reconstruction --v test1 --localpyl Reconstruction --v prod1 --ce RWTH
```

```
target = DCacheTarget("/path/to/file.txt")
with target.open("w") as f:
    f.write("some result")
```

→ WLCG implementations provide scalability in the HEP context

Direct Consequences and Benefits

- Toolbox providing building blocks for analyses, not a framework
 - → Permissive, non-restrictive design pattern
 (e.g. no constraint on language or data structure)
- All information transparently encoded in tasks, targets & dependencies
 - → Results *reproducible* by developer, groups, reviewers, ...
 - → Documentary benefits, enables *analysis preservation*
- make-like execution across distributed resources
 - → Reduces overhead of manual management
 - → Improves cycle times & error-proneness
- Expansion of the concept of collaboration
 - → Clear structure lowers entry barrier
 - → Modularization allows re-use of tasks & intermediate results

Direct Consequences and Benefits

- Toolbox providing building blocks for analyses, not a framework
 - → Permissive, non-restrictive design pattern
 (e.g. no constraint on language or data structure)
- All information transparently encoded in tasks, targets & dependencies
 - → Results *reproducible* by developer, groups, reviewers, ...
 - → Documentary benefits, enables *analysis preservation*
- make-like execution across distributed resources
 - → Reduces overhead of manual management
 - → Improves cycle times & error-proneness
- Expansion of the concept of collaboration
 - → Clear structure lowers entry barrier
 - → Modularization allows re-use of tasks & intermediate results

Example Application: ttH Analysis @ CMS

ttH: measurement of Higgs ↔ quark Yukawa coupling

■ large-scale: ~30k input files, ~50 TB of storage, ~1000 unique Tasks

complex: irreducible backgrounds, ~40 systematic variations,

DeepLearning/BDTs, multiple categorization schemes

Run locations:
 7 CEs, local machines, GPU machines

• Storage locations: 2 SEs (dCache), local disk, Dropbox, CERNBox

- Aware of entire workflow structure at all times, fast evaluation & revision
- Group of 5 people, clear allocation of duties and their interface
- Yet, entire analysis operable by everyone at all times
- Setup allows for execution with a single command

→ Successful proof of usability & suitability

Summary

- HEP analyses likely to increase in scale and complexity
 - → Analysis workflow management *essential for success* of future measurements
- Divergent requirements of existing, specialized management systems and those for "end-user" analyses
 - → Need for a *toolbox* providing a *design pattern*, *not a framework*
- Luigi provides a promising way to model even *complex* workflows
- WLCG extension introduces *scalability* in the HEP context
- Increased *transparency & reproducibility* → *analysis preservation*
- Encourages collaboration beyond code sharing
- Successfully applied in actual ttH analysis with CMS

Backup

Luigi - An Introduction

- Package for building complex pipelines
- open-source and community driven
- Simple core API:

 - Tasks are configured with Parameter's ———— dataset = luigi.Parameter(default="ttH125")
 - Selection(dataset=self.dataset) defines (multiple) dependencies
 - Tasks produce Target's, output def output(self): return luigi.LocalTarget("reco_%s.root" \ representations with an exist() method % self.dataset)
 - Actual workload defined in run() method, ———— def run(self): # do whatever a reconstruction does completely flexible via python code

python reco.py Reconstruction --dataset ttH125

Development started at Spotify, now

```
# reco.py
```

import luigi

from analyses.ttH.tasks import Selection

Luigi - make-like Execution

- Luigi's execution system is make-like, it only processes what is really necessary
 - 1. For the triggered task, create the dependency tree
 - 2. Determine tasks to actually run:
 - 2.1. Walk down the tree
 - 2.2. For each path, stop when all output targets of a task *exist*
 - 3. Run tasks in *n workers*
- Very clear & scalable through simple structure
- Error handling & automatic re-scheduling
- Command line integration & tools
- Central scheduling & visualization

Luigi - Central Scheduler

- Not a "scheduler" in HEP language, scheduling takes place on worker
- Think of it as a "global task lock"
- Optional, but powerful when working in teams / collaborations
 - Same task should not run twice
 - Saves resources but also ensures target/ data integrity
- Dependency, status & resource visualization
- Control of running workers (add, abort, ...)
- Custom status messages & task history

HEP Layer - GFAL Targets

- When running on the WLCG, use of storage elements is a necessity
- Fortunately, there is GFAL (Grid File Access Library)
 - Developed by Data Management Clients group at CERN
 - Command line tools & python bindings
 - Handles all file transfer protocols of the HEP community
 - → Combine GFAL with Luigi targets
- Simple API, batch transfers, validation, auto-retry, local caching, ...
- Usage equivalent to local targets

```
def output(self):
    return DCacheTarget("/path/to/file.txt")

def run(self):
    self.output().parent.touch()

with self.output().open("w") as f:
    f.write("measurement results: ...")
```


Application: Implementation of Systematics

	"ShiftTask"		"AnalysisTask"		
Systematics	Selection	Reconstruction	Evaluation	Inference	
nominal					 ✓ implements ✓ bubbles up / effective: nominal requires ✓ requires ⇒ saved → "implement as late as possible
JES					
JER					
PDF					
Q ²					
		— direction c	of processing -		

tfdeploy (1)

• tensorflow graphs consist of operations and tensors

- Examples: $t_3 = add(t_1, t_2)$, $t_2 = softmax(t_1)$
- Ops are bound to devices (CPU/GPU), tensors are transferred if needed
- tfdeploy:
 - Implements tree structure in pure python
 - Tensors = numpy arrays
 - Ops = vectorized numpy calls, need to implement all tensorflow ops
 - Works in all environments, even in C++ with Python C-API, helpful for sharing

Tensor

Device

Operation

tfdeploy (2)

Modular Analysis with VISPA & PXL

