
Marcel Rieger*,
Martin Erdmann, Benjamin Fischer, Robert Fischer

12/10/2016

Design and Execution of make-like
distributed Analyses based on

Spotify’s Pipelining Package Luigi

luigi: © 2011-2016, Erik Bernhardsson and Elias Freider
workflow image: Kevin Boucher, lansa.com

> make + → →

experiment theory

• Scale:	 	 measure of resource consumption and amount of data
• Complexity:	 measure of granularity and inhomogeneity of workloads

Landscape of Analyses in HEP

Marcel Rieger - CHEP 2016 - 12/10/2016 2

Scale

Co
m

pl
ex

ity

Computing
infrastructures

(WLCG)

Good scripts

& code structure

Single machine,
single command

Analysis
workflow

management

• Future analyses likely to be large and complex,
bottlenecks:
▪︎ Entangled and undocumented structure &

requirements between workloads,
only exists in the “physicist’s head”

▪︎ Bookkeeping of code, data, versions, …
▪︎ Manual execution and steering of jobs
▪︎ Error-prone & time-consuming

→ Analysis workflow management essential for future measurements!

Abstraction: HEP Analysis

• Workflow, decomposable into particular workloads

• Workloads related to each other by common interface
→ In/outputs define directed data flow

• Alter default behavior via parameters

• Computing resources
▪︎ Run location (CPU, GPU, grid, …)
▪︎ Storage location (local, dCache, …)

• Software environment

• Collaborative development and processing

• Reproducible intermediate and final results

Marcel Rieger - CHEP 2016 - 12/10/2016 3

Selection

Reconstruction

MVA Split

MVA
Training MVA Evaluation

Inference

MVA Training

Weights

GPU

CPU

example
→ Large overlap with features of workflow systems

Comparison of Workflow Management Systems (WMS)

Marcel Rieger - CHEP 2016 - 12/10/2016 4

Existing WMS
e.g. MC Management Generic Analysis WMS

Development Process final objective
known in advance

iterative, final composition
a priori unknown

Workflow Structure chain structure,
mostly one-dimensional

tree structure,
arbitrarily branched

Evolution static over time,
recurrent execution

dynamic,
fast R&D cycles

Infrastructure specially tailored,
e.g. storage systems, DBs

incorporate existing,
quickly adapt to changes

Applicability tuned to particular use case flexible, able to model
every possible workflow

Typical analysis tree:

1/5/14 McM @ CMSDAS, Jean-Roch Vlimant 3

The Path To An Analysis Dataset
● Figure out the relevant generator parameters
● Possible modifications in simulation itself

➢ for better data/MC agreement
● Figure out the requirements in terms of digitization and reconstruction to match the

analyzed data
● All steps can be done in the same workflow, however

➢ Computing requirements
 Generation and simulation mostly done at T2s
 Digitization and reconstruction mostly done at T1s

➢ Chronology of production
 Generation and simulation may start before digi-reco
 Several digi-reco might be required for a given sample of generated events

➔ Steps are split in several processing workflows
➔ Each group of steps is organized in a campaignTypical MC chain:

 → Existing WMS highly specialized for designated use case
 → Requirements for HEP analyses mostly orthogonal

 → Toolbox for flexible analysis conception

Luigi
• Python package for building complex pipelines
• Development started at Spotify, now open-source

and community driven

Building blocks
1. Workloads defined as Task classes
2. Tasks require other tasks & output Targets
3. Parameters customize and control task behavior

• Task execution → builds up dependency tree,
only computes what is necessary

• Web interface, error handling, command line tools,
collaborative features, …

Marcel Rieger - CHEP 2016 - 12/10/2016 5

→ Suitable tool to manage complexity

Luigi
• Python package for building complex pipelines
• Development started at Spotify, now open-source

and community driven

Building blocks
1. Workloads defined as Task classes
2. Tasks require other tasks & output Targets
3. Parameters customize and control task behavior

• Task execution → builds up dependency tree,
only computes what is necessary

• Web interface, error handling, command line tools,
collaborative features, …

Marcel Rieger - CHEP 2016 - 12/10/2016 5

→ Suitable tool to manage complexity

Luigi
• Python package for building complex pipelines
• Development started at Spotify, now open-source

and community driven

Building blocks
1. Workloads defined as Task classes
2. Tasks require other tasks & output Targets
3. Parameters customize and control task behavior

• Task execution → builds up dependency tree,
only computes what is necessary

• Web interface, error handling, command line tools,
collaborative features, …

Marcel Rieger - CHEP 2016 - 12/10/2016 5

→ Suitable tool to manage complexity

Luigi
• Python package for building complex pipelines
• Development started at Spotify, now open-source

and community driven

Building blocks
1. Workloads defined as Task classes
2. Tasks require other tasks & output Targets
3. Parameters customize and control task behavior

• Task execution → builds up dependency tree,
only computes what is necessary

• Web interface, error handling, command line tools,
collaborative features, …

Marcel Rieger - CHEP 2016 - 12/10/2016 5

→ Suitable tool to manage complexity

Luigi
• Python package for building complex pipelines
• Development started at Spotify, now open-source

and community driven

Building blocks
1. Workloads defined as Task classes
2. Tasks require other tasks & output Targets
3. Parameters customize and control task behavior

• Task execution → builds up dependency tree,
only computes what is necessary

• Web interface, error handling, command line tools,
collaborative features, …

Marcel Rieger - CHEP 2016 - 12/10/2016 5

→ Suitable tool to manage complexity

Adding Scalability: Luigi and the WLCG

• Example for implementation of abstract run & storage locations

1. Submit tasks as jobs to computing elements
▪︎ Simple usage, transparent Luigi integration
▪︎ Actual run location (local, CE) not hard-coded,

decision made at execution time
▪︎ Mandatory features like pilot jobs, automatic

resubmission, or batch submission

2. Store targets on storage elements (e.g. dCache)
▪︎ Built on top of GFAL2 Python bindings,

transparent Luigi integration
▪︎ Mandatory features like automatic retries,

local caching, or batch transfers

Marcel Rieger - CHEP 2016 - 12/10/2016 6

→ WLCG implementations provide scalability in the HEP context

GFAL2

Adding Scalability: Luigi and the WLCG

• Example for implementation of abstract run & storage locations

1. Submit tasks as jobs to computing elements
▪︎ Simple usage, transparent Luigi integration
▪︎ Actual run location (local, CE) not hard-coded,

decision made at execution time
▪︎ Mandatory features like pilot jobs, automatic

resubmission, or batch submission

2. Store targets on storage elements (e.g. dCache)
▪︎ Built on top of GFAL2 Python bindings,

transparent Luigi integration
▪︎ Mandatory features like automatic retries,

local caching, or batch transfers

Marcel Rieger - CHEP 2016 - 12/10/2016 6

→ WLCG implementations provide scalability in the HEP context

GFAL2

> pyl Reconstruction --v test1 --local
> pyl Reconstruction --v prod1 --ce RWTH

Direct Consequences and Benefits

• Toolbox providing building blocks for analyses, not a framework
→ Permissive, non-restrictive design pattern

(e.g. no constraint on language or data structure)

• All information transparently encoded in tasks, targets & dependencies
→ Results reproducible by developer, groups, reviewers, …
→ Documentary benefits, enables analysis preservation

• make-like execution across distributed resources
→ Reduces overhead of manual management
→ Improves cycle times & error-proneness

• Expansion of the concept of collaboration
→ Clear structure lowers entry barrier
→ Modularization allows re-use of tasks & intermediate results

Marcel Rieger - CHEP 2016 - 12/10/2016 7

Selection

Reconstruction

MVA Split

MVA Evaluation

Inference

MVA Training

Weights

Direct Consequences and Benefits

• Toolbox providing building blocks for analyses, not a framework
→ Permissive, non-restrictive design pattern

(e.g. no constraint on language or data structure)

• All information transparently encoded in tasks, targets & dependencies
→ Results reproducible by developer, groups, reviewers, …
→ Documentary benefits, enables analysis preservation

• make-like execution across distributed resources
→ Reduces overhead of manual management
→ Improves cycle times & error-proneness

• Expansion of the concept of collaboration
→ Clear structure lowers entry barrier
→ Modularization allows re-use of tasks & intermediate results

Marcel Rieger - CHEP 2016 - 12/10/2016 7

Selection

Reconstruction

MVA Split

MVA Evaluation

Inference

MVA Training

Weights

Reconstruction

MVA Training

Inference

Example Application: ttH Analysis @ CMS

• ttH: measurement of Higgs ↔ quark Yukawa coupling
▪︎ large-scale:	 ~30k input files, ~50 TB of storage, ~1000 unique Tasks
▪︎ complex:		 irreducible backgrounds, ~40 systematic variations, 	

	 	 	 	 DeepLearning/BDTs, multiple categorization schemes

• Run locations:	 	 7 CEs, local machines, GPU machines
• Storage locations:	 2 SEs (dCache), local disk, Dropbox, CERNBox

• Aware of entire workflow structure at all times, fast evaluation & revision

• Group of 5 people, clear allocation of duties and their interface
• Yet, entire analysis operable by everyone at all times

• Setup allows for execution with a single command

Marcel Rieger - CHEP 2016 - 12/10/2016 8

→ Successful proof of usability & suitability

w
or

kfl
ow

 im
ag

e:
 K

ev
in

Bo
uc

he
r,

lan
sa

.c
om

Summary

Marcel Rieger - CHEP 2016 - 12/10/2016 9

Scale

Co
m

pl
ex

ity

Computing
infrastructures

(WLCG)

Good scripts

& code structure

Single machine,
single command

Analysis
workflow

management

• HEP analyses likely to increase in scale and complexity
→ Analysis workflow management essential for success of future

measurements
• Divergent requirements of existing, specialized management

systems and those for “end-user” analyses
→ Need for a toolbox providing a design pattern, not a framework

• Luigi provides a promising way to model even complex workflows
• WLCG extension introduces scalability in the HEP context

• Increased transparency & reproducibility → analysis preservation
• Encourages collaboration beyond code sharing

• Successfully applied in actual ttH analysis with CMS

Marcel Rieger - CHEP 2016 - 12/10/2016

Backup

Luigi - An Introduction
• Package for building complex pipelines
• Development started at Spotify, now

open-source and community driven

• Simple core API:
▪︎ Workloads are written in Task’s

▪︎ Tasks are configured with Parameter’s

▪︎ Tasks can require other tasks,
defines (multiple) dependencies

▪︎ Tasks produce Target’s, output
representations with an exist() method

▪︎ Actual workload defined in run() method,
completely flexible via python code

Marcel Rieger - CHEP 2016 - 12/10/2016 11

> python reco.py Reconstruction --dataset ttH125

Luigi - make-like Execution
• Luigi’s execution system is make-like, it only

processes what is really necessary
1. For the triggered task, create the dependency

tree
2. Determine tasks to actually run:

2.1.	 Walk down the tree
2.2.	 For each path, stop when all output 	

targets of a task exist
3. Run tasks in n workers

• Very clear & scalable through simple structure
• Error handling & automatic re-scheduling
• Command line integration & tools
• Central scheduling & visualization

Marcel Rieger - CHEP 2016 - 12/10/2016 12

triggered

Task
Dependency
through Target

Luigi - Central Scheduler

• Not a “scheduler” in HEP language,
scheduling takes place on worker

• Think of it as a “global task lock”

• Optional, but powerful when working in teams
/ collaborations
▪︎ Same task should not run twice
▪︎ Saves resources but also ensures target/

data integrity

• Dependency, status & resource visualization

• Control of running workers (add, abort, …)

• Custom status messages & task history

Marcel Rieger - CHEP 2016 - 12/10/2016 13

HEP Layer - GFAL Targets

Marcel Rieger - CHEP 2016 - 12/10/2016 14

• When running on the WLCG, use of storage elements is a necessity
• Fortunately, there is GFAL (Grid File Access Library)
▪︎ Developed by Data Management Clients group at CERN
▪︎ Command line tools & python bindings
▪︎ Handles all file transfer protocols of the HEP community

• Simple API, batch transfers, validation, auto-retry, local caching, …
• Usage equivalent to local targets

dCache

SFTP

GSIFTP

XROOTD

S3

DropBox

WebDAV

…

→ Combine GFAL with Luigi targets

Application: Implementation of Systematics

Marcel Rieger - CHEP 2016 - 12/10/2016 15

“ShiftTask” “AnalysisTask”

Systematics Selection Reconstruction Evaluation Inference

nominal ✔ ✔ ✔ ✔

JES ☆ ✔ ✔ ✔

JER ☆ ✔ ✔ ✔

PDF ☆ ☆ ✔ ✔

Q2 ☆ ☆ ✔ ✔

✔ bubbles up /
						effective: nominal

✔ implements

direction of processing

☆	 saved
→ “implement as
			 late as possible”

✔ requires

tfdeploy (1)
• tensorflow graphs consist of operations and tensors

• Examples: t3 = add(t1, t2), t2 = softmax(t1)
• Ops are bound to devices (CPU/GPU), tensors are transferred if needed

• tfdeploy:
▪︎ Implements tree structure in pure python
▪︎ Tensors 	 = numpy arrays
▪︎Ops 	 	 = vectorized numpy calls, need to implement all tensorflow ops
▪︎Works in all environments, even in C++ with Python C-API, helpful for sharing

Marcel Rieger - CHEP 2016 - 12/10/2016 16

op

op

op

op

op

op

op

t
tout

t

t

t

t

t

t

tin

tin

GPU op

t Tensor

Operation

CPU Device

tfdeploy (2)

Marcel Rieger - CHEP 2016 - 12/10/2016 17

Modular Analysis with VISPA & PXL

Marcel Rieger - CHEP 2016 - 12/10/2016 18

