Machine Learning Developments in ROOT

Sergei Gleyzer, Lorenzo Moneta
for the ROOT-TMVA Team

CHEP 2016, October 10, 2016
Outline

• Status and Overview
• New TMVA Features
 – External Interfaces
 – Deep Learning, Jupyter, Parallelization
• Future Plans and Outlook
• Summary
TMVA

Toolkit for Multivariate Analysis:

• HEP Machine Learning workhorse
• Part of ROOT
• In LHC experiments production
• Easy for beginners, powerful for experts
• 17 active contributors (5 GSoCs)
New TMVA version released in upcoming ROOT 6.0.8
New TMVA Features
New Features

Modularity, External Interfaces, Updated SVMs
Analyzer Tools: Variable Importance
Deep Learning CPU, GPU
Parallelization with multithreading and GPUs
Analyzer Tools: Cross-Validation, Hyper-Parameter Tuning
Regression Loss Functions
Jupyter: Interactive Training, Visualizations
Unsupervised Learning
Deep Autoencoders
Multi-processing, Spark parallelization

Added in 2015
Added in TMVA ROOT 6.0.8
Upcoming 2016
TMVA Interfaces

Interfaces to External ML Tools

• **RMVA** interface to **R**
• **PyMVA** interface to **scikit-learn**
• **KMVA** interface to **Keras**
 – High-level interface to **Theano**, **TensorFlow** deep-learning libraries
Deep Learning

Is a powerful Machine Learning method based on Deep Neural Networks (DNN) that achieves significant performance improvement in classification tasks.
Deep Learning

New Deep-Learning Library in TMVA

• GPU support
 – CUDA
 – OpenCL

• Excellent performance and high numerical throughput
Deep Learning

CPU Performance:

Implementation:
- OpenBLAS, TBB

Peak performance per core:
- 16 GFLOP/s
- Single, Double Precision
Deep Learning

GPU Performance:

Network:
- 20 input nodes
- 5 hidden layers with n_h nodes each

Hardware:
- NVIDIA Tesla K20
- 1.17 TFLOP/s peak performance @ double precision

Good Throughput
Deep Learning

Throughput Comparison

Excellent throughput compared to Theano on same GPU

Single precision
batch size = 1024

2.7 * Theano

Numerical Throughput [GFLOP/s]
Deep Learning

ROC Performance: significant improvements compared to shallow networks and boosted decision trees
Cross Validation

New features:

• k-fold cross-validation

• Hyper-parameter tuning
 – Find optimized parameters (SVM, BDT)
New Regression Features:

Loss functions:
- Huber (default)
- Least Squares
- Absolute Deviation
- Custom Function

Important for regression performance
Classifier output: Neural networks, decision trees

Simple neural network
- Python function reads the network, converts to JSON; JS with d3js make the visualization from JSON
- Interactive: focusing connections, zooming, moving

Deep neural network
- HTML5 Canvas visualization (speed)
- Less interactive: zooming, moving

Decision trees
- Ipywidgets: input field for selecting the tree
- Visualization from JSON with D3js
- Interactive: closing subtree, showing the path, focusing, moving, zooming, reset
New pre-processing features:

• Hessian Locally Linear Embedding
 – (Hessian LLE)

• Variance Threshold
Some Upcoming Features
Spark TMVA

SPARK Parallelization

Test

Good speed-up in prototype R&D
Deep Autoencoder

Deep Autoencoders

- Deep neural network is trained to output the input i.e. learn the identity functions.
- Constrain number of units in hidden layer, thus learning compressed representation.

Variance Threshold

1. Input Features
2. Calculate Variance
3. Compare Threshold
4. Selected Features
Summary

• Many new features in TMVA release upcoming in ROOT 6.0.8
 – Production-ready parallelized Deep Learning
 – Cross-validation, Hyper-parameter tuning
 – Jupyter integration
 – More pre-processing features
 – Regression updates
• Many contributions
• Feedback and further contributions welcome
Feature Contributors

- Sergei Gleyzer: Analyzer Tools, Algorithm Development
- Lorenzo Moneta: Multi-threading, Multi-processing
- Omar Zapata Mesa: PyMVA, RMVA, Modularity, Parallelization
- Peter Speckmeyer: Deep-Learning CPU
- Simon Pfreundschuh: Deep-Learning CPU and GPU
- Adrian Bevan, Tom Stevenson: SVMs, Cross-Validation, Hyperparameter Tuning
- Attila Bagoly: Jupyter Integration, Visualization, Output
- Albulena Saliji: TMVA Output Transformation
- Stefan Wunsch: KERAS Interface
- Pourya Vakilipourtakalou: Cross-Validation, Parallelization
- Abhinav Moudhil: Pre-processing, Deep Autoencoders
- Georgios Douzas: Spark, Cross-Validation, Hyperparameter Tuning
- Paul Seyfert: Performance optimization of MLP
- Andrew Carnes: Regression, Loss Functions, BDT Parallelization

Continued invaluable contributions from Andreas Hoecker, Helge Voss, Eckhard von Thorne, Jörg Stelzer, and key support from CERN EP-SFT Group
More Information

Websites: http://root.cern.ch
 http://iml.cern.ch
 http://oproject.org
Inter-experimental LHC Machine Learning working group

– Exchange of HEP-ML expertise and experience among LHC experiments

– ML Forum

– ML software development and maintenance

– Exchange between HEP and ML communities

– Education (Tutorials)
Backup
TMVA Deep Learning

Design

\[u_1 = f(W_1 x + \theta_1) \quad u_2 = f(W_2 u_1 + \theta_2) \quad u_3 = f(W_3 u_2 + \theta_3) \quad u_4 = f(W_4 u_4 + \theta_4) \]

link