

22nd International Conference on Computing in High Energy and Nuclear Physics, Hosted by SLAC and LBNL, Fall 2016

Accelerating Navigation in the VecGeom **Geometry Library**

for the VecGeom developers

CHEP16@San Francisco 12.10.2016

Sandro Wenzel / CERN with Yang Zhang / KIT

"Offer geometry library with API for vector transport in Geant-V ... targeting use of SIMD from ground up"

"Effort to improve speed, algorithms, code, maintenance burden, ..." of geometry code for the benefit of Geant4 / TGeo..."

VecGeom = Geometry Primitives (USolids) + Geometry Model / Navigation + Many-Particle API

gitlab.cern.ch/VecGeom/VecGeom

Sandro Wenzel: Accelerating VecGeom Navigation

The VecGeom Project

"Offer geometry library with API for vector transport in Geant-V ... targeting use of SIMD from ground up"

"Effort to improve speed, algorithms, code, maintenance burden, ..." of geometry code for the benefit of Geant4 / TGeo..."

Geometry Primitives (USolids) VecGeom + Geometry Model / Navigation + Many-Particle API

gitlab.cern.ch/VecGeom/VecGeom

Sandro Wenzel: Accelerating VecGeom Navigation

The VecGeom Project

"Offer geometry library with API for vector transport in Geant-V ... targeting use of SIMD from ground up"

"Effort to improve speed, algorithms, code, maintenance burden, ..." of geometry code for the benefit of Geant4 / TGeo..."

VecGeom = Geometry Primitives (USolids) + Geometry Model / Navigation + Many-Particle API

gitlab.cern.ch/VecGeom/VecGeom

Sandro Wenzel: Accelerating VecGeom Navigation

The VecGeom Project

Focus of previous development ...

Today: Acceleration the navigation module
Explicit SIMD vectorization
navigator code specialization
Focus on one-particle features as needed by Geant4 !!

Shape-Primitives Status: The ALICE Use-Case

- most CPU relevant shape-primitives

Primitive	Safety	Dist2In	Dist2Out	Contains	CPU% Sum
Pgon	2.05	2.52	0.18	1.18	5.93
Xtru	0.56	0.68	0.20	1.81	3.25
Pcon	1.07	0.32	0.05	0.13	1.57

% of CPU cost of shape primitives (TGeo) in typical ALICE Pb-Pb simulation

VecGeom now has all shape-primitives to satisfy needs of most HEP experiments (Xtruded added recently)

For ALICE simulations (Pb-Pb), demonstrate that VecGeom offers very significant performance gains for the

Shape-Primitives Status: The ALICE Use-Case

- most CPU relevant shape-primitives

Depending on experiment, a few % in CPU simulation cost gainable by switching to VecGeom **primitives** (integration effort into G4/TGeo under way)

VecGeom now has all shape-primitives to satisfy needs of most HEP experiments (Xtruded added recently)

For ALICE simulations (Pb-Pb), demonstrate that VecGeom offers very significant performance gains for the

Geometry primitives provide algorithms for simple ray - shape problems (focus on individual object)

Sandro Wenzel: Accelerating VecGeom Navigation

The Navigation Module

- Geometry primitives provide algorithms for simple ray shape problems (focus on individual object)
- Navigation module provides "multi-object" algorithms:
 - provides next colliding object + distance in a "multi-object" scene
 - provide object after the next boundary crossing
 - simulations spend significant time in navigation module (ALICE ~30% with TGeo, similar in CMS, ...)

The Navigation Module

"Single-object" problem "From individual objects to scenes" "Multi-object" problems "toy" 2D representation

- Geometry primitives provide algorithms for simple ray shape problems (focus on individual object)
- Navigation module provides "multi-object" algorithms:
 - provides next colliding object + distance in a "multi-object" scene
 - provide object after the next boundary crossing
 - simulations spend significant time in navigation module (ALICE) ~30% with TGeo, similar in CMS, ...)

Goals / Targets:

- Implement navigation system in VecGeom
- Implement acceleration structures for fast candidate rule-out (scaling ~log(N) - see voxel techniques of G4/TGeo)
- Target explicit SIMD acceleration

How to combine this with SIMD paradigm?

SIMD Acceleration of "Voxel" Navigation

Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, ...

CHEP16, San Francisco, 12/10/2016

How to combine this with SIMD paradigm?

candidates

SIMD Acceleration of "Voxel" Navigation

Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, ...

Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit

How to combine this with SIMD paradigm?

candidates

SIMD Acceleration of "Voxel" Navigation

Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, ...

Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit

Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, ...

How to combine this with SIMD paradigm?

Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit candidates

get SIMD gain from treating group of boxes in parallel get scaling from hierarchies of bounding box groups (forming regular trees)

Inspired from e.g.: Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays (DOI: 10.1111/j. 1467-8659.2008.01261.x) + CPU ray-tracing libraries: Intel Embree, ...

Sandro Wenzel: Accelerating VecGeom Navigation

SIMD Acceleration of "Voxel" Navigation

CHEP16, San Francisco, 12/10/2016

Basic algorithm:

- Let S == elements in SIMD register
- cluster objects into groups of S objects (we use a variation of k-means)
- identify bounding boxes of grouped objects as daughters of a tree node
- iterate this process

Algorithm illustrated here for SSE (= 2 double numbers per register)

Sandro Wenzel: Accelerating VecGeom Navigation

Regular Tree Building via Clusterization

........................

final

CHEP16, San Francisco, 12/10/2016

- Test approach on various detector volumes
 - most important complex volumes from ALICE: ALIC + TPC_Drift
 - a complex volume from CMS: MBWheel (~600 daughter volumes)
- Perform local navigation benchmark*: One step + boundary crossing in the given volume for 0.5 million different tracks

Volume	Daughters	G4	TGeo	VecGeom (SSE4.2)	VecGeom (AVX2)
ALIC (ALICE)	65	0.74	1.07	0.30	0.23
TPC_Drift (ALICE)	641	14	2.2	1.2	0.9
MBWheel (CMS)	~600	0.84	1.09	0.49	0.35

numbers are time in seconds; worst is red; best is blue

Demonstrating overall speedup >2x in navigation compared to existing solutions Demonstrating gain from SIMD vector unit (see change SSE4.2 to AVX2)

*All packages used in standard release mode without particular tuning

Sandro Wenzel: Accelerating VecGeom Navigation

Benchmark SIMD-Trees: Local Benchmark

Evaluate VecGeom (solids + navigation) on complex modules for multiple steps

perfect for validation of navigation algorithms □ good to get a global idea of library performance

Testing VecGeom in "Toy" Simulations

screen; **pixel** records some scalar tracking information (number of boundaries crossed) and can be converted to an image

CHEP16, San Francisco, 12/10/2016

□ Example for ALICE ITSSPD module

□Perfect agreement between G4/ TGeo/VecGeom

- □Observe generally factors > 2.6x speed improvement against other packages
- □Another indication of global performance advantage of VecGeom

4.0 nalized Time 3.0 2.0 Norm 1.0 0.0

Geantino-XRay: Global Performance

zoom

"Production" ... to current R&D

Sandro Wenzel: Accelerating VecGeom Navigation

CHEP16, San Francisco, 12/10/2016

□ VecGeom offers faster navigation compared to G4/TGeo!! ... Can we do more? (other than different acceleration structures)?

Sandro Wenzel: Accelerating VecGeom Navigation

Further R&D in Navigation Optimization

- □ VecGeom offers faster navigation compared to G4/TGeo!! ... Can we do more? (other than different acceleration structures)?
- Traditional simulation navigation algorithms are still ...

Further R&D in Navigation Optimization

- VecGeom offers faster navigation compared to G4/TGeo!! ... Can we do more? (other than different acceleration structures)?
- Traditional simulation navigation algorithms are still ...

□ ... too generic

- runtime polymorphic approach
 - in particular: no internal vectorization possible

Further R&D in Navigation Optimization

- acceleration structures)?
- Traditional simulation navigation algorithms are still ...

... too generic

- runtime polymorphic approach
 - in particular: no internal vectorization possible

u ... poorly exploiting structural and static information about a scene

- no usage of **boundary touching relations** between objects
- no fast lookup of global-local transformations for placed entities
- etc...

Sandro Wenzel: Accelerating VecGeom Navigation

Further R&D in Navigation Optimization

VecGeom offers faster navigation compared to G4/TGeo!! ... Can we do more? (other than different

Example: Static geometry analysis can reveal that object1 only touches object2; tracks leaving 1 never have to be checked against

CHEP16, San Francisco, 12/10/2016

- □ VecGeom offers faster navigation compared to G4/TGeo!! ... Can we do more? (other than different acceleration structures)?
- Traditional simulation navigation algorithms are still ...

□ ... too generic

- runtime polymorphic approach
 - in particular: no internal vectorization possible

u ... poorly exploiting structural and static information about a scene

- no usage of **boundary touching relations** between objects
- no fast lookup of global-local transformations for placed entities
- etc...

Sandro Wenzel: Accelerating VecGeom Navigation

Further R&D in Navigation Optimization

Example: Static geometry analysis can reveal that object1 only touches object2; tracks leaving 1 never have to be checked against

- □ HEP detectors are pretty static objects; most things are known at compile time or constant during (long) run-time
- Opportunity to pre-analyse + precompute + compile-time optimize
- **R&D goal:** Exploit these opportunities via volumespecialized navigator algorithms produced via automatic C++ code generation

A prototype service to generate volume-specialized navigator algorithms has been implemented

- considerably reduced virtual functions
- reduce time spent in coordinate transformation (via compile-time lookup structures)
- put static neighbourhood information for fast relocation

Implementation Status and Workflow

Generated Navigator class (as C++ code) "NavigationSpecializer"

A prototype service to generate volume-specialized navigator algorithms has been implemented

- considerably reduced virtual functions
- reduce time spent in coordinate transformation (via compile-time lookup structures)
- put static neighbourhood information for fast relocation
- Can be embedded into a (JIT) workflow of a simulation

Sandro Wenzel: Accelerating VecGeom Navigation

Implementation Status and Workflow

Specialized Navigator Improvement: Benchmark examples								
Extracted important ("showering") volumes (in terms of number of steps) in an ALICE Pb-Pb simulation								
Measure time to perform a "step" in these volumes				PRELIMINARY !!				
Volume	G4	TGeo	VecGeom General	VecGeom Specialized	EXTRA SPEEDUP			
ZNST	0.24	0.28	0.10	0.06	1.67			
ZPST	0.25	0.29	0.11	0.06	1.83			
DCML	0.24	0.28	0.12	0.06	2.00			
voRBCuTube	0.16	0.24	0.10	0.06	1.67			
ZNGx	0.09	0.18	0.06	0.03	2.00			
AFaGraphiteCone	0.74	0.36	0.11	0.03	3.67			
numbers are time in seconds; worst is red; best is blue								

Navigator specialization delivers extra speedup kick; making gain compared to G4/TGeo even more significant

particle SIMD gains possible or more efficient.

Sandro Wenzel: Accelerating VecGeom Navigation

In context of Geant-V: This technique reduces the non-vectorizable parts of navigation and makes multi-

- Presented advances in navigation module of VecGeom
- **Have (first) SIMD enabled navigation acceleration structures in production:**
 - Shown to generally outperforming existing solutions in Geant4/TGeo
- □ Showed an avenue to further improve navigation performance
 - By automatic navigator code specialization (R&D prototype status)
 - Lot's of work to be done...

"VecGeom navigation is more than an interesting alternative to Geant4/TGeo navigation and could be beneficial to simulation frameworks NOW"

Summary

Backup section

Sandro Wenzel: Accelerating VecGeom Navigation

CHEP16, San Francisco, 12/10/2016

- **SIMD** Vectorization
 - Achieved via exlicit SIMD programming using C++ wrapping libraries such as Vc, UMESIMD, ...
 - Using our abstraction layer "VecCore"
- Navigation System

 - Navigation state is carried in separate classes which become part of a track property
- (Preliminary) Impact of VecGeom for Geant-V
 - VecGeom is used as one of the native navigation system in Geant-V (the other being TGeo)
 - VecGeom reduces overall simulation memory consumption over TGeo by factors > 2
 - measuring a "simulation speed gain" over TGeo by factors $> \sim 2$
- Benchmark setup:
 - All benchmarks presented here were run with tag "W40-16" of VecGeom
 - Benchmark machine: Intel(R)-Core(TM) i7-5930K running CERN CC7
 - **–** compiler gcc4.8.5
 - Vc I.2.0 backend with native (=AVX2) instruction set (unless otherwise specified)

Miscellaneous Information

- In contrast to G4/TGeo; VecGeom navigator classes are state-less, facilitating easy use for multi-threading and multi-particle queries

