Everware toolkit

supporting reproducible science and challenge-driven education

Tim Head, Igor Babuschkin3, Alexander Tiunov2, Andrey Ustyuzhanin1,2

\textit{2016-10-11, CHEP}

1Yandex School of Data Analysis, 2Higher School of Economics NRU, 3University of Manchester
Irreproducibility indicators

› ‘Which version of my code I used to generate figure 13?’

› ‘The new student wants to reuse that model I published three years ago but he can’t reproduce the figures’

› ‘I thought I’ve used the same parameters but I’m getting different results...’

› ‘Which dataset did I use to compare algorithms?’

› ‘Why did I do that?!’

› ‘It worked yesterday!!’
Cases in point: Medical science

Amgen (a commercial company) in 2012

› 53 landmark papers in cancer drug development
› Scientific findings confirmed only in 6 (11%) cases

Bayer (a commercial company) in 2011

› 67 projects
› Results confirmed in 20-25% cases

A new study is under way and to be completed in 2017

› https://osf.io/e81xl/wiki/home/

http://www.nature.com/nature/journal/v483/n7391/full/483531a.html
http://www.nature.com/news/cancer-reproducibility-project-scales-back-ambitions-1.18938
http://www.nature.com/nrd/journal/v10/n9/full/nrd3439-c1.html
Nature's Reproducibility Survey

IS THERE A REPRODUCIBILITY CRISIS?

7% Don’t know

52% Yes, a significant crisis

3% No, there is no crisis

38% Yes, a slight crisis

1,576 researchers surveyed

 › Nature: 1,500 scientists lift the lid on reproducibility by Monya Baker
 Andrey.Ustyuzhanin@cern.ch, YSDA
HOW MUCH PUBLISHED WORK IN YOUR FIELD IS REPRODUCIBLE?

Physicists and chemists were most confident in the literature.

Number of respondents from each discipline:
Biology 703, Chemistry 106, Earth and environmental 95, Medicine 203, Physics and engineering 236, Other 233
Rise of challenge-driven education

Learning by solving real-world problems in interdisciplinary & international projects.

› Imagine Cup, http://imaginecup.com/
› Hackathons, e.g., http://webfest.web.cern.ch/
› Open data days, http://opendataday.org/

Platforms (with plenty of examples):

› Kaggle, https://www.kaggle.com/
› Codalab, https://competitions.codalab.org/
› ...
Rise of challenge-driven education

Learning by solving real-world problems in interdisciplinary & international projects.

› Imagine Cup, http://imaginecup.com/
› Hackathons, e.g., http://webfest.web.cern.ch/
› Open data days, http://opendataday.org/

Platforms (with plenty of examples):

› Kaggle, https://www.kaggle.com/
› Codalab, https://competitions.codalab.org/
› ...

Complication and boost factors are similar to research reproducibility.
Computational experiment

Computational experiment is a significant part of the experiment, that starts after the data is collected.

Possible effects (see previous slide):

- **Practical**
 - better mentoring/supervision
 - more within-lab validation
 - simplified external-lab validation
 - incentive for better practice
 - robust design

- **Educational**
 - wider access to the best practices
 - better teaching

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.

- Better understanding of statistics
- Better mentoring/supervision
- More robust design
- Better teaching
- More within-lab validation
- Incentives for better practice
- Incentives for formal reproduction
- More external-lab validation
- More time for mentoring
- Journals enforcing standards
- More time checking notebooks
High Energy Physics

- **data** storage
 - shared storage (XROOTD, AFS, EOS, CERNBOX, ...)

- standardized **environment**
 - software: ROOT, minuit, experiments software stacks, ...
 - computational cluster (e.g. lxplus)

- **code** versioning repository (gitlab)

- advanced analysis approaches
 - blind analysis
 - reviews, cross-checks within group, inter-group collaboration

- collaborative culture
 - q&a groups, experts
 - publishing workflow
Reproducible computational study key components

- Basic assumptions (vocabulary)
- Data
- Environment + Resources (CPU/GPU)
- Code/scripts
- Workflow
- Automated intermediate results checks
- Final results (datasets, publications)
Key missing part: environment version control

- language and OS agnostic,
- capture and restore environment configuration,
- run configurations

would enable:

- workflow automation
- automated results re-validation
- archiving data analysis along with containers/VMs
Example

Running https://github.com/everware/everware-dimuon-example

Sorry, printed version doesn’t support animation.
How it works

- **resources**: wherever everware is installed (Yandex)

- **data**: CERNBOX
How it works

› **resources**: wherever everware is installed (Yandex)

› **data**: CERNBOX

› **environment** management:
 › conda or virtualenv
 › docker
How it works

- **resources**: wherever *everware* is installed (Yandex)

- **data**: CERNBOX

- **environment** management:
 - conda or virtualenv
 - docker

- **github**: analysis **code** versioning
How it works

› **resources**: wherever *everware* is installed (Yandex)

› **data**: CERNBOX

› **environment** management:
 › conda or virtualenv
 › docker

› **github**: analysis **code** versioning

› **Jupyter(Hub)**: runs the code interactively (a-la **workflow**)
How it works

› **resources**: wherever *everware* is installed (Yandex)

› **data**: CERNBOX

› **environment** management:

 › conda or virtualenv

 › docker

› **github**: analysis **code** versioning

› Jupyter(Hub): runs the code interactively (a-la **workflow**)

› continuous integration: intermediate **results checks** & report
How it works

› resources: wherever everware is installed (Yandex)

› data: CERNBOX

› environment management:
 › conda or virtualenv
 › docker

› github: analysis code versioning

› Jupyter(Hub): runs the code interactively (a-la workflow)

› continuous integration: intermediate results checks & report

› everware: to rule them all (just a bunch of wrappers!)
Everware is ...

... about re-usable science, it allows people to jump right into your research code. Lets you launch Jupyter notebooks from a git repository with a click of a button.

• https://github.com/everware
• https://everware.rep.school.yandex.net (Yandex instance)

Examples:

• algorithm meta-analysis, https://github.com/openml/study_example
• gravitational waves, https://github.com/anaderi/GW150914
• COMET, https://github.com/yandexdataschool/comet-example-ci
Everware is ...

... about re-usable science, it allows people to jump right into your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware
- https://everware.rep.school.yandex.net *(Yandex instance)*

Examples:

- *algorithm meta-analysis*, https://github.com/openml/study_example
- *gravitational waves*, https://github.com/anaderi/GW150914
- *COMET*, https://github.com/yandexdataschool/comet-example-ci

Think of transition from procedural coding approach to object-oriented.
Everware toolkit

› extension for *JupyterHub*:

 › spawner for building and running custom *docker* images

› integrated with:

 › dockerhub

 › github (for authentication and repository interaction)

› similar to *mybinder.org* but with focus on scientific research

› Research guidelines
Pros & cons

Pros

- easier supervision/mentoring
- easier within-lab validation
- wider access to the best practices
- simplified cross-lab validation
- good incentive for formal reproduction
- good thing for industry career track development

Cons

- learning a bit of (open-sourced) technology
- re-organize internal research process
- inner barrier for openness
- higher incentive for mindless borrowing
- divergence/potential learning curves (promotes users to create unique environments)
Basic research workflow with everware

1. Create Environment Image/Description
2. Create repository
3. Test on CI
4. Run on everware

- code
- makefile
- circle.ci
- Dockerfile
- arxiv + gitxiv + everware link
Education workflow with everware

Tested on (some examples):

- Python course at YSDA 2015
- YSDA course on Machine learning at Imperial College London 2016
- Kaggle competitions 2016
- Machine learning course at University of Eindhoven
- LHCb open data masterclass
Bonus: automatic results checking

- Continuous integration
 - add `circle.yml`
 - enable repository checking at https://circleci.com
 - add badge

- monitor status by email/slack/telegram/...
- automatically generate research artefacts - dashboard of the experiment
Roadmap

› Integrate with data sharing resources (zotero, figshare, etc)
› Automatic capture of environment (integrate with repro-zip)
› Integration with publishing resources (gitxiv, re-science, openml)
› Bring your own resources computational model
› Computations based on models other than Jupyter
Reproducibility is not easy;
...but is not that scary,
...with a bit of openness,
and technology.

everware *works* for research and education (no people were harmed during testing);
easy to try;
WIP, https://github.com/everware (open-source, care to join?);
feature requests are welcome
pull requests are most welcome
See talk on LHCb open data masterclass for an extensive example.
Thank you!

Andrey Ustyuzhanin, anaderiru @ twitter

Slideshow created using remark
Backup slides
Yandex School of Data Analysis is

› non commercial private university https://yandexdataschool.com (separate from Yandex)
› 450+ students graduated since 2007
› Graduate students receive strong education in Data & Computer Science (main supply of Yandex employees)
› Interest in interdisciplinary research — Data Science methods to Information Retrieval and Fundamental Sciences
› organizes bi-yearly international Machine Learning Conference, YAC https://yandexdataschool.com/conference/
› 25% of our students have background in Physics
› full member of LHCb since 2015, associate member during 2014-2015
References

http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://rescience.github.io/read/
http://push.cwcon.org/
https://openml.org
https://figshare.com/
https://gitlab.cern.ch/lhcb-bandq-exotics/Lb2LcD0K
https://osf.io/ezcuj/wiki/home/
https://osf.io/e81xl/wiki/home/
Center for open science, https://cos.io/
IPFS, https://github.com/ipfs/
Nature, keyword: reproducibility,
http://www.nature.com/news/reproducibility-1.17552
Dealing with cognitive bias

How Scientists Fool Themselves — and How They Can Stop

Cognitive Fallacies in Research

- Hypothesis Myopia
 Collecting evidence to support a hypothesis, not looking for evidence against it, and ignoring other explanations.

- Texas Sharpsnooter
 Seizing on random patterns in the data and mistaking them for interesting findings.

- Asymmetric Attention
 Rigorously checking unexpected results, but giving expected ones a free pass.

- Just-So Storytelling
 Finding stories after the fact to rationalize whatever the results turn out to be.

Debiasing Techniques

- Devil's Advocacy
 Explicitly consider alternative hypotheses — then test them out head-to-head.

- Pre-Commitment
 Publicly declare a data collection and analysis plan before starting the study.

- Team of Rivals
 Invite your academic adversaries to collaborate with you on a study.

- Blind Data Analysis
 Analyse data that look real but are not exactly what you collected — and then lift the blind.

http://go.nature.com/nqyohl
Research workflow with everware

- User creates a git repository for his project
- User creates some code, notebooks, figures out what libraries he needs
- User creates `Dockerfile` where he writes all the dependencies for his code (use `everware-cli`)
- User creates `Makefile` that simplifies start one of the targets in `Makefile` passes through all the essential steps of analysis
- (optional) User tests that his analysis is runnable by one of the CI systems (e.g. on travis, adding `.travis.yml`)
- User tests that analysis is also runnable by everware
- User completes his research and checks that he/she can reproduce all the figures/tables supporting his hypothesis by running corresponding notebooks (or automates cascade of notebooks execution by single `Makefile` target)
- User publishes paper, filling-in special form link to his git repository and to everware that any member of the researcher community can pick-up from to improve his research

https://github.com/everware/everware/wiki/How-to-embed-everware-into-research-use-cases