

Everware toolkit

supporting reproducible science and challenge-driven education

Tim Head, Igor Babuschkin³, Alexander Tiunov²,

<u>Andrey Ustyuzhanin</u>^{1,2}

2016-10-11, CHEP

¹Yandex School of Data Analysis, ²Higher School of Economics NRU, ³University of Manchester

Irreproducibility indicators

- 'Which version of my code I used to generate figure 13?'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
- 'I thought I've used the same parameters but I'm getting different results...'
- 'Which dataset did I use to compare algorithms?'
- 'Why did I do that?!'
- 'It worked yesterday!!'

Cases in point: Medical science

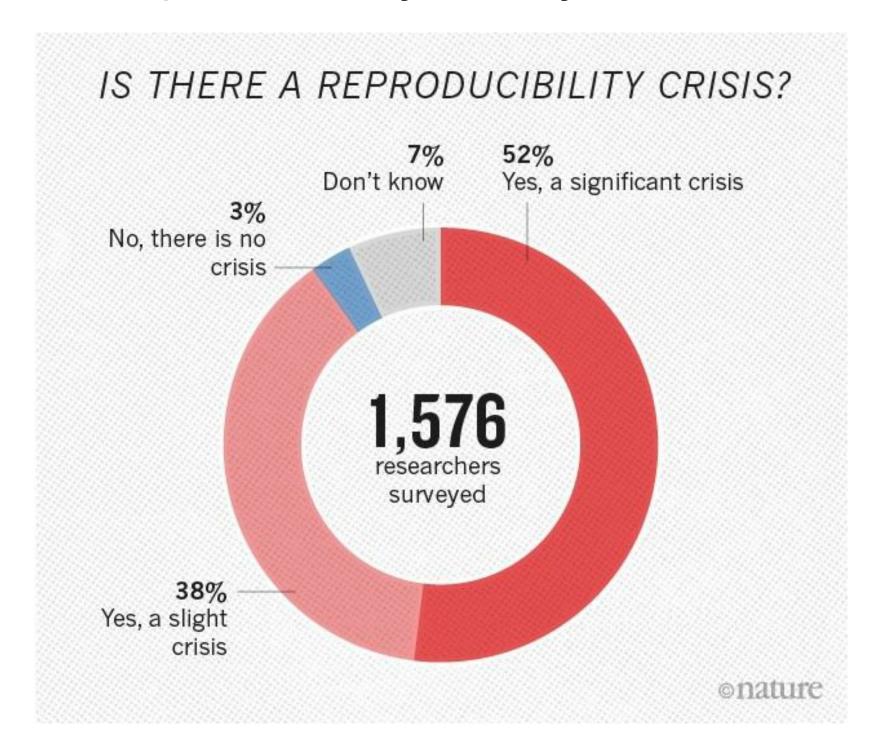
Amgen (a commercial company) in 2012

- > 53 landmark papers in cancer drug development
- > Scientific findings confirmed only in 6 (11%) cases

Bayer (a commercial company) in 2011

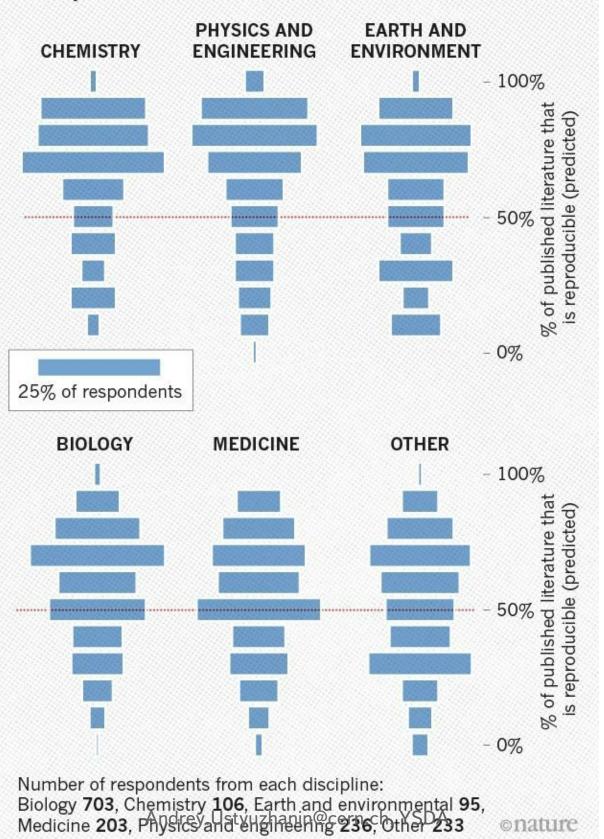
- > 67 projects
- Results confirmed in 20-25% cases

A new study is under way and to be completed in 2017


https://osf.io/e81xl/wiki/home/

http://www.nature.com/nature/journal/v483/n7391/full/483531a.html

http://www.nature.com/news/cancer-reproducibility-project-scales-back-ambitions-1.18938


http://www.nature.com/nrd/journal/v10/n9/full/nrd3439-c1.html

Nature's Reproducibility Survey

HOW MUCH PUBLISHED WORK IN YOUR FIELD IS REPRODUCIBLE?

Physicists and chemists were most confident in the literature.

onature

Rise of challenge-driven education

Learning by solving real-world problems in interdisciplinary & international projects.

```
Imagine Cup, http://imaginecup.com/
```

- Hackathons, e.g., http://webfest.web.cern.ch/
- Open data days, http://opendataday.org/
- Guide to Challenge Driven Education, https://www.kth.se/social/group/guide-to-challenge-d/

Platforms (with plenty of examples):

```
Kaggle, https://www.kaggle.com/
Codalab, https://competitions.codalab.org/
...
```

Rise of challenge-driven education

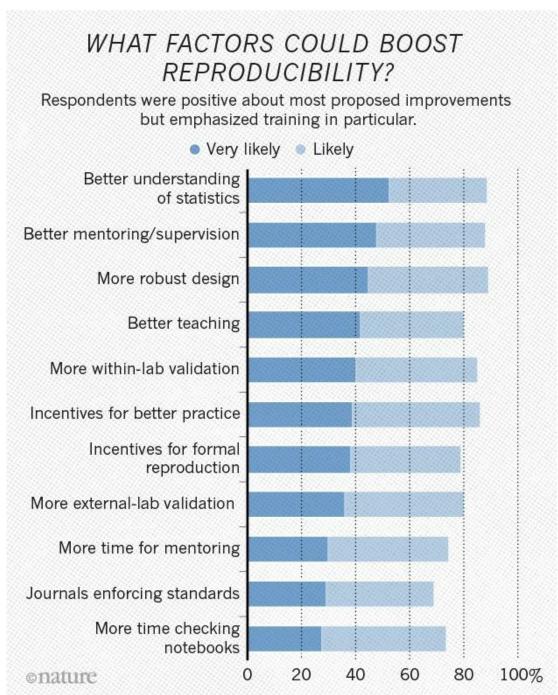
Learning by solving real-world problems in interdisciplinary & international projects.

- Imagine Cup, http://imaginecup.com/
- Hackathons, e.g., http://webfest.web.cern.ch/
- Open data days, http://opendataday.org/
- Guide to Challenge Driven Education, https://www.kth.se/social/group/guide-to-challenge-d/

Platforms (with plenty of examples):

- Kaggle, https://www.kaggle.com/
- Codalab, https://competitions.codalab.org/
- **)** ...

Complication and boost factors are similar to research reproducibility.



Computational experiment

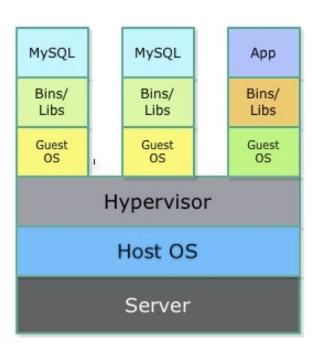
Computational experiment is a significant part of the experiment, that starts after the data is collected.

Possible effects (see previous slide):

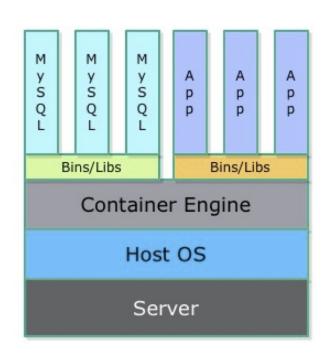
- Practical
 - better mentoring/supervision
 - more within-lab validation
 - > simplified external-lab validation
 - incentive for better practice
 - robust design
- Educational
 - wider access to the best practices
 - better teaching

High Energy Physics

data storage shared storage (XROOTD, AFS, EOS, CERNBOX, ...) standardized environment software: ROOT, minuit, experiments software stacks, ... computational cluster (e.g. 1xplus) code versioning repository (gitlab) advanced analysis approaches blind analysis reviews, cross-checks within group, inter-group collaboration collaborative culture q&a groups, experts publishing workflow


Reproducible computational study key components

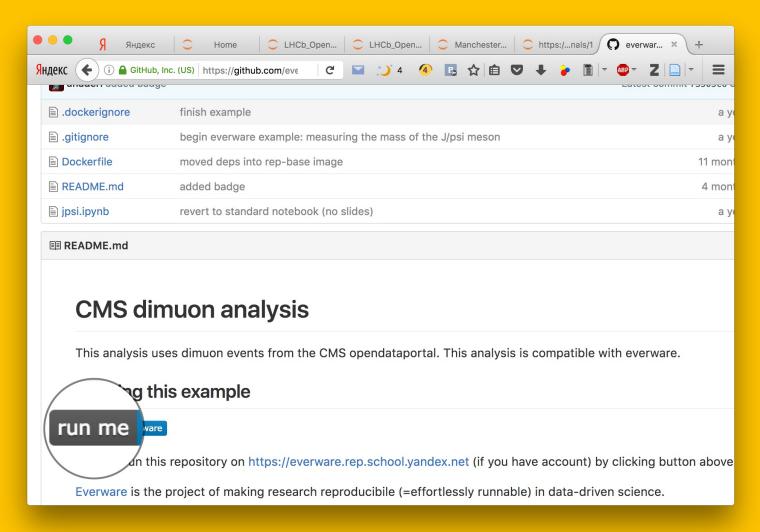
- Basic assumptions (vocabulary)
- Data
- Environment + Resources (CPU/GPU)
- Code/scripts
- Workflow
- Automated intermediate results checks
- Final results (datasets, publications)


Key missing part: environment version control

- language and OS agnostic,
- capture and restore environment configuration,
- run configurations

Virtual Machines

Containers


would enable:

- workflow automation
- automated results re-validation
- archiving data analysis along with containers / VMs

Example

Running https://github.com/everware/everware-dimuon-example

Sorry, printed version doesn't support animation.

resources: wherever *everware* is installed (Yandex)

data: CERNBOX

- resources: wherever everware is installed (Yandex)
- data: CERNBOX
- > environment management:
 - conda or virtualenv
 - docker

- resources: wherever everware is installed (Yandex)
- **data:** CERNBOX
- **environment** management:
 - conda or virtualenv
 - docker
-) github: analysis **code** versioning

- **resources:** wherever *everware* is installed (Yandex)
- data: CERNBOX
- **environment** management:
 - conda or virtualenv
 - docker
-) github: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)

- resources: wherever everware is installed (Yandex)
- **data:** CERNBOX
- **environment** management:
 - > conda or virtualenv
 - docker
-) github: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)
- continuous integration: intermediate **results checks** & report

- resources: wherever everware is installed (Yandex)
- **data:** CERNBOX
- **environment** management:
 - > conda or virtualenv
 - docker
- yithub: analysis **code** versioning
- Jupyter(Hub): runs the code interactively (a-la workflow)
- continuous integration: intermediate **results checks** & report
- **everware**: to rule them all (just a bunch of wrappers!)

Everware is ...

... about re-usable science, it allows people to jump right into your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware
- https://everware.rep.school.yandex.net (Yandex instance)

Examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

Everware is ...

... about re-usable science, it allows people to jump right into your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware
- https://everware.rep.school.yandex.net (Yandex instance)

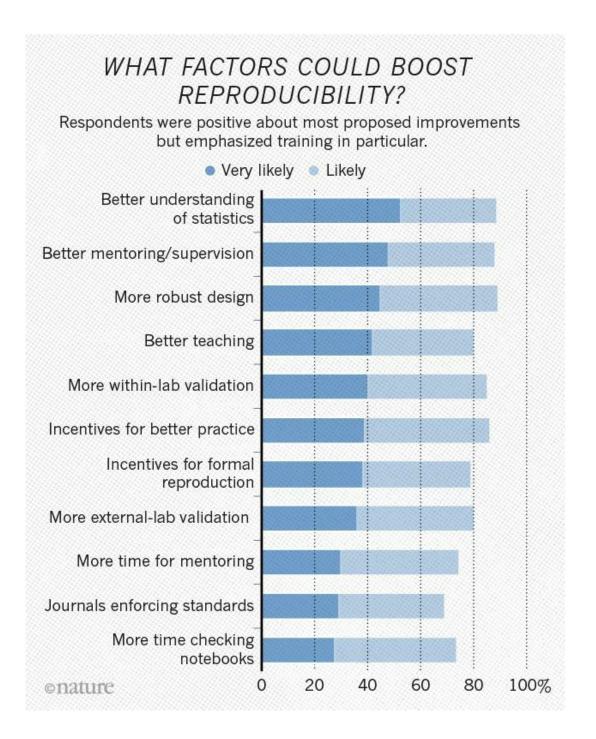
Examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

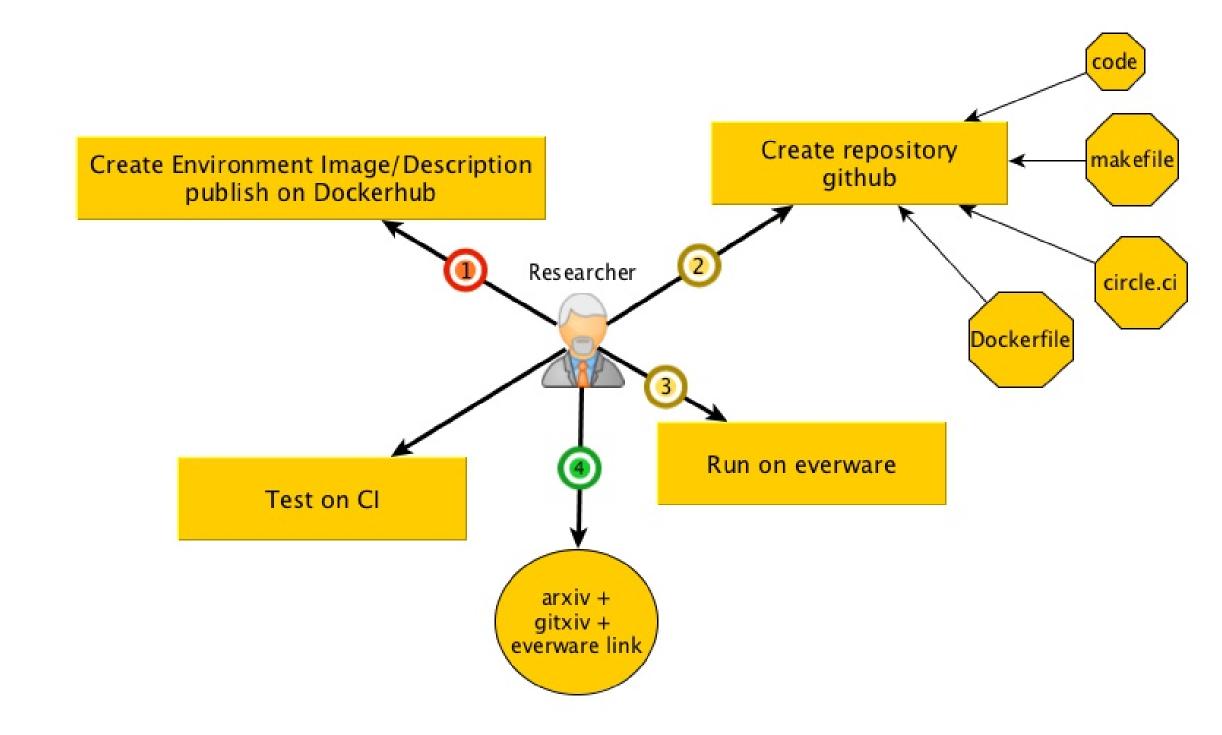
Think of transition from procedural coding approach to object-oriented.

Everware toolkit

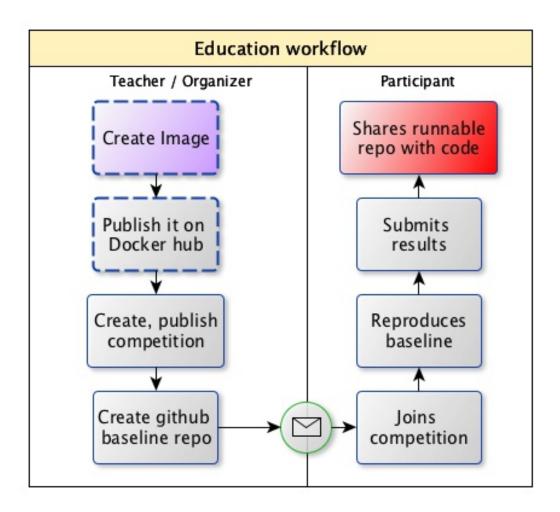
- > extension for *JupyterHub*:
 - > spawner for building and running custom *docker* images
- integrated with:
 - dockerhub
 - github (for authentication and repository interaction)
- similar to *mybinder.org* but with focus on scientific research
- Research guidelines


Pros & cons

Pros

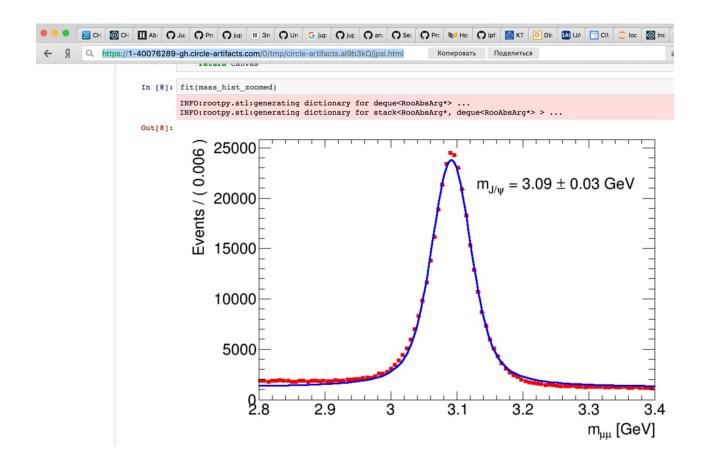

- easier supervision/mentoring
- easier within-lab validation
- wider access to the best practices
- > simplified cross-lab validation
- good incentive for formal reproduction
- good thing for industry career track development

Cons


- learning a bit of (open-sourced) technology
- re-organize internal research process
- inner barrier for openness
- higher incentive for mindless borrowing
- divergence/potential learning curves (promotes users to create unique environments)

Basic research workflow with everware

Education workflow with everware



Tested on (some examples):

- Python course at YSDA 2015
- Machine Learning in High Energy Physics summer school 2016
- > YSDA course on Machine learning at Imperial College London 2016
- Kaggle competitions 2016
- Machine learning course at University of Eindhoven
- LHCb open data masterclass

Bonus: automatic results checking

- Continuous integration
 - add circle.yml
 - > enable repository checking at https://circleci.com
 - add badge
- monitor status by email/slack/telegram/...
- automatically generate research artefacts dashboard of the experiment

Roadmap

- Integrate with data sharing resources (zotero, figshare, etc)
- Automatic capture of environment (integrate with repro-zip)
- Integration with publishing resources (gitxiv, re-science, openml)
- Bring your own resources computational model
- Computations based on models other than Jupyter

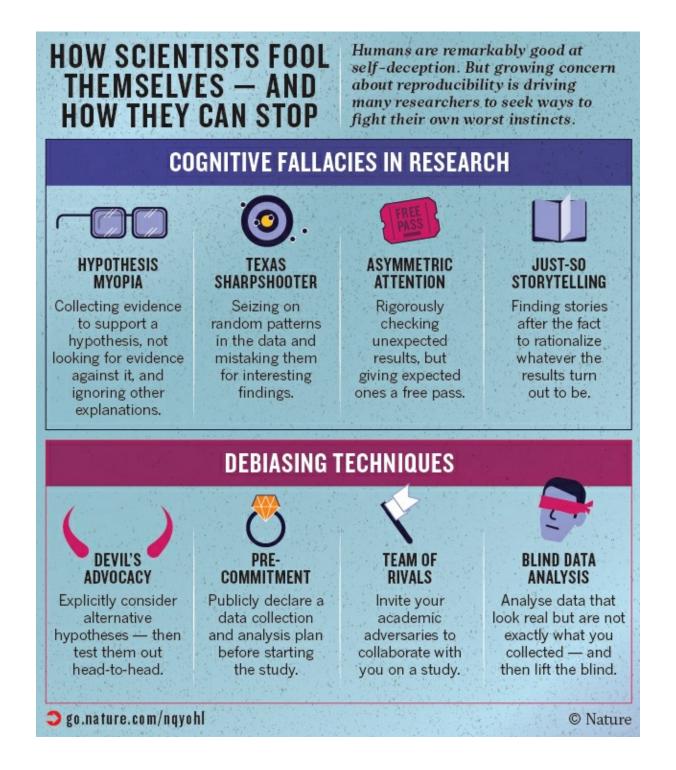
Envoi

Reproducibility is not easy; ...but is not that scary, ...with a bit of openness, and technology. everware works for research and education (no people were harmed during testing); easy to try; WIP, https://github.com/everware (open-source, care to join?); feature requests are welcome pull requests are most welcome See talk on LHCb open data masterclass for an extensive example.

Thank you!

Andrey Ustyuzhanin, anaderiru @ twitter

Backup slides


Yandex School of Data Analysis is

- non commercial private university https://yandexdataschool.com (separate from Yandex)
- > 450+ students graduated since 2007
- > Graduate students receive strong education in Data & Computer Science (main supply of Yandex employees)
- Interest in interdisciplinary research Data Science methods to Information Retrieval and Fundamental Sciences
- organizes bi-yearly international Machine Learning Conference, YAC https://yandexdataschool.com/conference/
- > 25% of our students have background in Physics
- full member of LHCb since 2015, associate member during 2014-2015

References

```
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-
1.19970
https://rescience.github.io/read/
https://push.cwcon.org/
https://openml.org
https://figshare.com/
https://gitlab.cern.ch/lhcb-bandq-exotics/Lb2LcD0K
https://osf.io/ezcuj/wiki/home/
https://osf.io/e81xl/wiki/home/
Center for open science, https://cos.io/
IPFS, https://github.com/ipfs/
Nature, keyword: reproducibility,
http://www.nature.com/news/reproducibility-1.17552
```

Dealing with cognitive bias

http://go.nature.com/nqyohl 21 / 21

Research workflow with everware

- User creates a git repository for his project
- User creates some code, notebooks, figures out what libraries he needs
- User creates Dockerfile where he writes all the dependencies for his code (use everware-cli)
- User creates Makefile that simplifies start one of the targets in Makefile passes through all the essential steps of analysis
- (optional) User tests that his analysis is runnable by one of the CI systems (e.g. on travis, adding, .travis.yml)
- User tests that analysis is also runnable by everware
- User completes his research and checks that he/she can reproduce all the figures/tables supporting his hypothesis by running corresponding notebooks (or automates cascade of notebooks execution by single Makefile target)
- User publishes paper, filling-in special form link to his git repository and to everware that any member of the researcher community can pick-up from to improve his research