
Exploring	Compression	Techniques	 for	ROOT	 IO	

Zhe Zhang, Brian Bockelman
University of Nebraska-Lincoln

zhan0915@huskers.unl.edu, bbockelman@cse.unl.edu

Agenda

•  Introduction
•  Motivation
•  Approaches
•  Results
•  Conclusions

Introduction

•  ROOT is a software tool to store large amount of objects and

help researchers to analyze and visualize the data.
Ø  ROOT uses tree to store objects.
Ø  Trees allow user to sequentially and randomly access entries.
Ø  Trees allow user to access sub-branches.

class A

class B class C

class D class E class F class G

Event Structure:
class A {

 class B {
 class D;
 class E;
 };
 class C {
 class F;
 class G;
 };

};

class
A Event n

class
B

class
C

class
D

class
E

class
F

class
G

class
A ……

class
B

class
C

class
D

class
E

class
F

class
G

class
A ……

class
B

class
C

class
D

class
E

class
F

class
G

class
A ……

class
B

class
C

class
D

class
E

class
F

class
G

class
A ……

class
B

class
C

class
D

class
E

class
F

class
G

class
A ……

class
B

class
C

class
D

class
E

class
F

class
G

class
A Event 4

class
B

class
C

class
D

class
E

class
F

class
G

class
A Event 3

class
B

class
C

class
D

class
E

class
F

class
G

class
A Event 2

class
B

class
C

class
D

class
E

class
F

class
G

class
A Event 1

class
B

class
C

class
D

class
E

class
F

class
G

class
A Event 0

class
B

class
C

class
D

class
E

class
F

class
G

Trees	are	serialized	by	branches:	
	
•  Easy	comparison	across	branches.	
•  Redundant	data	are	close	together.

Motivation

•  ROOT works well for the common case (reading

sequentially through a fixed set of branches) – can we
beat its performance for various other use cases?

Ø  Alternative compression algorithms
Ø  Performance of random reads
Ø  Comparison to naïve approach

Zlib LZMA LZ4

Fast	compression	speed

Medium	compression	speed

Slow	compression	speed

Fast	decompression	speed

Medium	decompression	speed

Slow	decompression	speed

High	compression	raCo

Medium	compression	raCo

Low	compression	raCo

AlternaCve	Compressions:	
	
•  Zlib	vs	LZMA	vs	LZ4	(right	table)	
•  Tradeoffs	between	compression	raCo	

and	decompression	speed

Test Setup:

•  CMS file contains 9 trees.
•  The tree of Events has 213 branches and 6500 entries.
•  Raw data file is 6.4 GB.

Read performance:

•  LZ4-HC performs slightly better than

Zlib-6 but not significant.

on-disk

Basket

event

event

event

Fill

Compression

ROOT	pipeline:	
	
•  Each	branch	has	a	basket.	
•  Each	basket	is	filled	with	events.	
•  Each	basket	is	compressed	and	flush	to	disk	

once	it	is	full.

on-disk

Basket

event

event

event

Fill

Compression

ROOT	pipeline:	
	
•  Each	branch	has	a	basket.	
•  Each	basket	is	filled	with	events.	
•  Each	basket	is	compressed	and	flush	to	disk	

once	it	is	full.

What	if	we	only	want	to	read	a	single	event	
with	several	bytes	out	from	a	basket	of	32	KB	?

Random Access Compression:

Add array of offsets for compressed entries in TKey.
ROOT searches the offset before decompress the basket;
can decompress individual events.

Handcrafted objects:

•  Tlarge (4MB):

Ø  is an array which contains 1,000,000 elements of which each is 4 bytes,
and each random float number is repeated 60 times.

•  Tsmall (4KB):
Ø  is an array which contains 1,000 elements of which each is 4 bytes, and

each random float number is repeated 6 times.
•  Tint (39B):

Ø  is an Int array which contains 6 integer with the same value.

RAC Compression Ratio:

•  Tiny events decrease compression ratio.
•  Once the size of single event goes

beyond basket size, RAC is basically the
same thing with non-RAC.

RAC Read performance:

•  For small events, RAC requires more IOs

to read data, but it still needs less CPU
time to decompress data.

•  Once data are in cache, RAC becomes
much faster.

External Compression:

Dividing uncompressed ROOT file into equal size of blocks
on disk and independently compress each block. Done
with no knowledge of actual file contents, using SquashFS.

Compression Ratio:

•  ROOT gives better compression ratio
than SquashFS.

ROOT Optimal: indicates the default setting in current ROOT where each
basket size is dynamically configured by input data

Read every 10th events

Sequentially reads all events

Read every 100th events

Read Performance with Hot Cache:

•  ROOT understands the data layout better.
•  User-space decompression degrades read speed.

Conclusions:

•  LZ4 does not have significant improvement over Zlib.
•  RAC can dramatically accelerate random read speed for small

objects although it needs more storage.
•  ROOT decompresses basket in user space where random reads in

memory might slow down.
•  ROOT has a lot of good features: fast sequential access, sub-

branches accesses, good knowledge of event structure, etc. but
there is still some room to improve.

References:

•  Alternative compression algorithms

-  https://github.com/root-mirror/root/pull/81
•  Additional compression algorithms from gitbub@pseyfert

-  https://github.com/root-mirror/root/pull/177
•  RAC (not backward compatible):

-  https://github.com/root-mirror/root/pull/152

Compression Ratio:

•  LZMA has the best compression ratio.
•  LZ4 is worst
•  LZ4-HC sits between Zlib-1 and Zlib-6 (Default by

ROOT)

Write Performance:

•  LZ4 Compression is faster than Zlib and LZMA in

general and has similar performance with Zlib-1
•  LZMA is slowest

Appendix

Cold Cache:
Read all events sequentially

 &
Read every 10th events

Appendix

Hot Cache:
Read all events sequentially

 &
Read every 10th events

Appendix

Read every 100th events
with cold/hot caches

Appendix

RAC Random Read performance

Appendix

RAC Sequential Read performance

Appendix

Comprehensive RAC Read performance

