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Oscillations measurements rely on  flavor identification. 

Given the small cross sections of neutrinos, they are statistics 
limited by nature              i.e. 33 signal events in two years of data. 
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The neutrino flavor eigenstates 
undergo oscillations as they 
propagate. 

NuMI Off-axis νe Appearance Experiment

νμ

νμ

We produce a 
beam of mostly νμ 



Fernanda PsihasCHEP - October 2016CVN Neutrino Identification

3

PVC extrusions filled 
with liquid scintillator.  

The NOνA Detectors

Charged particles are detected though the 
scintillation light produced in each cell. 
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4Neutrino Interactions

Neutrino interactions are flavor conserving, thus, they can be identified from the outgoing 
particles.
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Traditional Reconstruction 
Use the topology and magnitude of the energy depositions.  
Takes advantage of the granularity and time resolution of our detectors. 

Groups of hits can be clustered as 
following the path of same particle 
starting at the interaction point.

When necessary we can fit an 
assumed trajectory for each cluster of 
hits.

We isolate individual interactions 
using time and space correlation of 
the hits.
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8Traditional ID Methods
Mostly focused on identifying the lepton in the event. Extracted features (i.e. track length and scattering for 
muons, topology of energy depositions for electromagnetic showers) 
  Require Previous reconstruction. 

Features are pre-defined, based on MC or test data.

)γLongitudinal log likelihood (e/
1− 0.5− 0 0.5 1

3
 1

0
×

Ev
en

ts
 

0
20
40
60
80

100
120

e
γ

A SimulationνNO

)γTransverse log likelihood (e/
1.5− 1− 0.5− 0 0.5 1 1.5

3
 1

0
×

Ev
en

ts
 

0
20
40
60
80

100 e
γ

A SimulationνNO

Example: The Likelihood ID method   

Reconstruct electron shower. 

Find likelihoods from it’s dE/dx profiles 
compared to particle hypotheses. 

  Likelihoods        Traditional Neural Network
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9ID with Convolutional Neural Networks

Premise: Rather than select a set of features a priori, let a  deep learning network extract features 
and draw correlations. 

In practice: Use “images” of our events to train Convolutional Neural Networks (CNNs) to identify 
neutrino interactions. 

Disentangle the identification from traditional reconstruction.  

Allow for features apart from those based in our assumptions of the physics.***  

Explore the potential of deep learning beyond event identification.  

https://developer.nvidia.com/deep-learning-courses

https://developer.nvidia.com/deep-learning-courses
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10ID with Convolutional Neural Networks

Premise: Rather than select a set of features a priori, let a  deep learning network extract features 
and draw correlations. 

In practice: Use “images” of our events to train Convolutional Neural Networks (CNNs) to identify 
neutrino interactions. 

Disentangle the identification from traditional reconstruction.  

Allow for features apart from those based in our assumptions of the physics.***  

Explore the potential of deep learning beyond event identification.  

In absence of test data, these methods rely on 
the simulations*  

Known features of trained networks like over-
training and saturating loss functions. 
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11Network Layers

Pooling Layers: 
Down-sampling is done by performing 
operations (average, max, etc) on the 
feature maps while still preserving the 
information. 

The simplest form of a CNN includes convolutional layers, max pooling layers and MLP layers. 

  Depiction of the LeNet Model http://deeplearning.net/tutorial/lenet.html

http://deeplearning.net/tutorial/lenet.html
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Kernel Renormalization: 
Kernels evolve as the training 
progresses through renormalization.  
This process uses non saturating 
functions.

Network Layers

Dropout: 
Randomly reset weights, effectively 
removing whole nodes at each step. 
Encourages complex dependence 
and discourages overtraining
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- Inspired by siamese architectures to allow the network to learn from 
features on each 2D view of the event.  

- Using the caffe framework  

- We train on Fermilab’s Wilson cluster GPUs (2 K40s) 

- Trained on 4.7 million simulated events of all neutrino interaction 
types plus cosmic rays 

Inception modules: 
Network in network model with 
kernels of multiple dimensions 

Convolutional Visual Network

Neutrino Event CVN: Siamese network architecture 
based on GoogLeNet.  

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

“Going deeper with convolutions” arXiv:1409.4842

  http://caffe.berkeleyvision.org/
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14CVN Performance On Real Data

CVN
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MRE (Muon Removed - Electron): 
Select a muon neutrino interaction with traditional ID methods. 

Remove the muon hits and replace them with a single 
simulated electron of matching momentum. 

Data/MC comparisons show less than 1% difference in 
efficiency.

Data Data   - μ  + e  
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Implemented in NOvA’s main analysis for the results shown this summer at Neutrino 2016 

76% Purity, 73% Efficiency and an equivalent increased exposure of 30%
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15CVN Performance on νe 
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16Ongoing Work CVN and Reconstruction

Using the existing reconstruction.

Original CVN network modified to take 4 
views (event + prong)  

Trained on 50% purity prongs from all 
events no preselection 
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Classify clusters by particle ID 
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17Ongoing Work CVN and Reconstruction

Contributing to reconstruction.

There are CNN implementations in the literature for pixel by pixel 
classification using semantic segmentation.  

In our events that means classify individual hits by the particle 
which caused them.  

Initial studies are ongoing to compare the performance of SS to 
traditional clustering and the existing particle CVN identifier. 

MC Simulation

Fully Convolutional Networks for Semantic Segmentation arXiv:1605.06211
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18Summary Convolutional Visual Network

CVN is our implementation of CNNs for neutrino event classification.  

It effectively increases out exposure by 30% compared to traditional ID methods.  
Studies show promise on other analyses, like the muon neutrino disappearance.  
Currently being used for multiple physics analysis.  

NOvA’s nue appearance analysis is the first implementation of a CNN in a HEP result. 

               CVN Paper: “A Convolutional Neural Network Neutrino Event Classifier” 

                                          A.Aurisano et. al.  JINST 11 (2016) no.09, P09001  

                   NOvA’s Latest results: Neutrino 2016 “New Results from NOvA ” LINK 

An implementation of CVN for cluster/particle classification is in testing stages. 

There is ongoing work for hit classification using semantic segmentation.  

Ongoing studies are learning about the interplay between traditional reconstruction and 
image classification techniques.  

http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=15688
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20CVN X View

Convolution
7× 7, stride 2

Max Pooling
3× 3, stride 2

LRN

Convolution
1× 1

Convolution
3× 3

LRN

Max Pooling
3× 3, stride 2

Inception
Module

Inception
Module

Max Pooling
3× 3, stride 2

Inception
Module

Y View

Convolution
7× 7, stride 2

Max Pooling
3× 3, stride 2

LRN

Convolution
1× 1

Convolution
3× 3

LRN

Max Pooling
3× 3, stride 2

Inception
Module

Inception
Module

Max Pooling
3× 3, stride 2

Inception
Module

Inception
Module

Avg Pooling
6× 5

Softmax Output

Convolutional Visual Network

Neutrino Event CVN:  
Classifier for events in a sampling calorimeter 
by neutrino interaction type. 

For the Electron Neutrino analysis: 
76% purity, 73% efficiency and a 30% 
equivalent increase in exposure. 

NOvA’s nue appearance analysis is the first 
implementation of a CNN in a HEP result. 

CVN Paper: “A Convolutional Neural Network 
Neutrino Event Classifier” A.Aurisano et. al.  
JINST 11 (2016) no.09, P09001 

CVN for Reconstruction:  
Ongoing studies to identify hit by hit in an 
event. This type of identification could 
influence the existing approaches at 
reconstruction.

Summary

q (ADC)10 102 310

q (ADC)10 102 3
10

q (ADC)10 102 310 q (ADC)10 102 310

νμ

e
νe

ν

p

μ

p

p

π

γ

γ

1m

1m

π0

MC Simulation

Is NOvA’s implementation of Convolutional Neural 
Networks



Fernanda PsihasCHEP - October 2016CVN Neutrino Identification

21CVN  t-SNE



Fernanda PsihasCHEP - October 2016CVN Neutrino Identification

22

Neutrino Interactions
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23Neutrino Oscillations

The neutrino flavor eigenstate 
oscillations are described by the 
PMNS matrix. 
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Oscillation  probability

The goal of oscillations experiments is to 
determine the PMNS parameters via oscillation 
probabilities. 

The measurable in these experiments 
is a count or energy spectrum.



The first step in our reconstruction is dividing an event (550 μs of data) 
into slices (groups of hits with some time and space coincidence) 
  

Isolating neutrino interactions
24
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The first step in our reconstruction is dividing an event (550 μs of data) 
into slices (groups of hits with some time and space coincidence) 
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Isolating neutrino interactions
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Vertexing: use lines of energy 
deposition formed with hough 
transforms to find intersections 

  

Clustering: find clusters in angular 
space around the vertex and 
merge views via topology and 
prong dE/dx 

Tracking: Trace particle trajectories using a kalman filter, example below
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4.7 million, minimally preselected 
simulated events, pushed into LevelDB 
databases: 80% for training and 20% for 
testing. 

Rescale calibrated energy depositions to 
go from 0 to 255 and truncate to chars 
for dramatically reduced file size at no 
loss of information 

Fine tuned with 5 million cosmic data 
events taken from an out of beam time 
minimal bias trigger. 

The architecture attempts to categorize    
events as {νµ, νe, ντ } × {QE,RES,DIS}, 
NC, or Cosmogenic. 

CVN Classifier 
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- Trained on 4.7 million simulated events of 
all neutrino interaction types plus cosmic 
rays. 

- training sample has minimal preselection 
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32CVN Performance

FEATURE MAPS

:
:
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More effective back propagation due to better weight initialization and saturation functions:

http://deepdish.io/

�� (x)

�x

= � (x) (1� � (x))

Sigmoid gradient goes to 0 when x is far 
from 1. Makes back propagation impossible!

ReLU (x)

�x

=

(
1 when x > 0

0 otherwise

Use ReLU to avoid saturation. 

Non Saturating Functions

http://deepdish.io/
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37Stochastic Gradient Descent.

In  SGD  we  avoid some of  the  cost of 
gradient descent by evaluating small 
batches of events one at a time.  

The performance of conventional 
gradient descent is approximated as the 
various noisy sub estimates even out, with 
the stochastic behavior even allowing for 
jumping out of local minima. 

http://hduongtrong.github.io/

http://hduongtrong.github.io/

