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Multivariate analysis (MVA) commonplace in HEP
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Neural networks (MLP, Deep Learning), boosted decision trees (BDT), matrix

element approaches etc.

Important issues to get the best from the algorithms:
Optimization —
Selecting the best hyperparameters -
Generalization
Testing for and avoiding overtraining
Model selection
Picking between different approaches
Widespread use aided by convenient tools /
We're working in several areas: /
1) Improved SVM implementation in TMVA [1]. ,/'
2) Cross validation tools in TMVA. /
3) Deep Learning using TensorFlow [2].
4) Generalization and model selection. |

(2) Cross validation (CV) used for \
improving model performance [5,6] |

Understanding model performance is vital. \
Training data cannot be trusted — biased.

Hold-out method typical in HEP reserves
substantial amount of data for testing.

K-fold CV — repeated trainings for overlapping data sets S
Holding out one fold for testing each time.
Dataset
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Combine repeated test results to
estimate algorithm performance.

CV tools for TMVA [4].
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Investigating running algorithm
training on GPUs.

— T~ cost C:tunable weight penalty for misclassification

N Pro:
S Make use of all the data.
B Con:
Involves multiple trainings so
3 can be computational expensive.
R On-going work:

(1) Support vector machines (SVM)[3] are widely used
outside particle physics but not so much within the field
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SVMs classify data using a maximal margin hyperplane mapped from a linear
classification problem to a possibly infinite dimensional (dual) hyperspace.

slack §: distance from hyperplane to it" support vector

Kernel Function K(x,y): maps input space into
higher dimensional feature space where
problem may be linearly separable.

Kernel optimised for each problem. Only points
\ near the decision boundart contribute
\ significantly so potentially less sensitive to
\ overtraining.

New implementation in TMVA git repo with
|expanded set of kernel functions [4].

| (3) Generalization and
Model Selection

/ To choose between models — need estimate of
/ generalized performance.

Different models on same data not guaranteed
to rank models correctly — CV can help (variance
can be large) [7,8].

Overtraining harms model performance

S leads to incorrect choices or biases.
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Hold out method gives no indication of variance
— resampling techniques like CV can help.

e s

Often we’re interested in distributions rather
than cuts. Need to establish generalisation
somehow. Binned KS test used by TMVA is
problematic.
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Need a measure appropriate to the
problem — some differences between
test and training might have no
impact others might be critical.

Extreme overtraining in action (BDT)
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Hold-out with jackknife based estimates of
expected mean and variance

Expected significance

Difference between
Ongoing work investigating: ;‘:,':,L',n:i;isnt’ws
* Measures of variance;
* Algorithm selection; 5

* Hypothesis test for generalisation.

Expected performance on
training and test samples
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