
A programming framework
for data streaming on the Xeon Phi

Sylvain Chapeland (CERN)
for the ALICE Collaboration

22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2016

Outline

• About ALICE O2

• About the Xeon Phi
• Purpose of the framework
• Features and implementation
• Use case

A programming framework for data streaming on the Xeon Phi - CHEP'16 2

ALICE Online-Offline project (O2)

• ALICE detector to be upgraded
• LHC long shutdown 2019-2020

• Increased data throughput
• Demanding processing and compression
• Estimated farm size:

Readout: ~250 nodes
Online reconstruction: ~1500 nodes

• Computing platforms to be selected: CPU, GPU, MIC, …
• Some hardware evaluations already done (c.f. TDR)
• To be completed with latest hardware for final selection

• See other ALICE O2 talks at CHEP’16
#114, #119, #120, #182, #230, #314, #378

Detector

O2

Storage

3.4 TB/s

90 GB/s

A programming framework for data streaming on the Xeon Phi - CHEP'16 3

What’s a Xeon Phi ?

• Device from Intel
• Intel Many Integrated Cores (MIC)
• KNC (2013), KNL (2016)

• Form factor
• (big) PCI-E “co-processor” (KNC, KNL soon?)
• Standalone systems, integrated fabric (KNL)

• Specifications highlights
• 57-72 physical cores
• x86 cores, based on Pentium (KNC) / Atom (KNL)
• 4-way multithreading
• Moderate core clocking (1.1-1.5 GHz)
• Large vectors (512b)
• Fast on-chip MCDRAM (KNL, 8-16GB)
• Power 200-300 W

• Potentially interesting for some processing tasks

> cat /proc/cpuinfo | grep processor | wc
256

A programming framework for data streaming on the Xeon Phi - CHEP'16 4

How to use a Xeon Phi ?

• Compilation of the code for MIC native execution
• scp + ssh (MIC runs Linux)

• Language extensions for parallelism
• OpenMP, Cilk

• Intel Performance libraries
• Math Kernel Library, Thread Building Blocks

• Explicit data and processing offloading
• Mapping of variables between CPU and MIC
• #pragma offload commands for I/O and execution

A programming framework for data streaming on the Xeon Phi - CHEP'16 5

Rationale

• While evaluating KNC in 2014, we noticed that:
• Offload usually intrusive in the processing code to be tested
• Lack of high-level offload mechanism matching well our data pattern
• Tuning needed to make good use of the MIC resources

• PCIe transfers
• Workload distribution on many cores

• Substantial development time spent on getting the data on the MIC efficiently
• Prevents to fully focus on algorithm / MIC-specific code optimization

• Work presented here is a by-product of this past benchmark study
• Paused for a while, revived with the arrival of the KNL(for its evaluation)

A programming framework for data streaming on the Xeon Phi - CHEP'16 6

Purpose of the framework

• Provide a (hopefully simple and efficient) way to…
• distribute data and run processing code on the MIC
• minimize transport/threading offload overheads

• performance and code complexity
• measure MIC performance with realistic data pattern

• sustained stream of input data chunks which can be processed in parallel

• Typical usage
• Implement some data processing algorithms
• Benchmark to see how they fit on MIC
• Run same code on CPU and MIC for comparison

A programming framework for data streaming on the Xeon Phi - CHEP'16 7

Building blocks for processing pipeline

• FIFO buffers
• Push(), Pop()
• 1-to-1, lock-free
• Store pointers

• Threads
• Start(), Stop(), doLoop()
• Sleep/yield when idle

• These components have been chosen based on previous positive experience in
multi-threaded server processes

A programming framework for data streaming on the Xeon Phi - CHEP'16 8

Architecture of a thread pool engine

Dispatch input Collect output

Pool of processing
threads

Push() Pop()

A programming framework for data streaming on the Xeon Phi - CHEP'16 9

Adaptation of thread engine to MIC PCIe

Offload thread loop
Executes #pragma offload commands
on CPU

Push() Pop()

Generic thread engine
Instance running on MIC

Thread for
data in

Thread for
data out

MIC
Pool of pre-

allocated
data pages

Pool of pre-
allocated

data pages

CPU
A programming framework for data streaming on the Xeon Phi - CHEP'16 10

From user’s perspective

• Implement a derived tProcessData class (one single method + factory)

processData (data* in, data * &out) { … }

• Use the pool in main()
• Instantiate a thread pool

new tProcessThreadPool (processDataFactory, nThreads)
• Move data in and out in a loop

tProcessThreadPool ->Push (dataIn)
tProcessThreadPool ->Pop (dataOut)

A programming framework for data streaming on the Xeon Phi - CHEP'16 11

An example use case

• Goal: measure performance of BZIP
• Because it is a task of similar nature than e.g. ITS cluster finder
• Readily available from the MIC-recompiled bzip library

• Implementation
• processData () is a single call to BZ2_bzBuffToBuffCompress()

• Runtime main
• Create a data set from local files
• Instantiate the MIC thread pool with given number of threads
• Loop pushing data in/ pulling data out
• Measure throughput

A programming framework for data streaming on the Xeon Phi - CHEP'16 12

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

B/
s)

Number of threads

Sandybridge 2x 8 cores
Sandybridge linear
Skylake 1x 4 cores
Skylake linear
KNC 57 cores (native exec)
KNC linear
KNL 64 cores (native exec)
KNL linear

Framework use case: BZIP benchmark (native exec)

Early framework prototype,
Pseudo-random data

A programming framework for data streaming on the Xeon Phi - CHEP'16 13

Framework use case: BZIP benchmark (MIC PCIe)

0

20

40

60

80

100

120

140

0 50 100 150

Th
ro

ug
hp

ut
 (M

B/
s)

Number of threads

Thread engine scalability (BZIP)

skylake

sandybridge

KNC PCIe

skylake linear

sandybridge linear

KNC linear

Latest framework prototype,
ITS pixel data

A programming framework for data streaming on the Xeon Phi - CHEP'16 14

Writing native code for MIC
• Not necessarily different than for CPU !
• Use Intel compiler: ICC

• Option –mmic to build native MIC code executable
• And/or compiler hints in source code: __declspec__ target(mic)
or #pragma offload_attribute (push,target(mic)) … #pragma offload_attribute (pop))

• External libs can be used on MIC
• need to recompile with appropriate flag to generate MIC code
• might get messy if many hierarchical dependencies

• Good portability / cross-compilation seen so far
• Mostly, just add compiler/linker option

For example, to build BZIP library, 3 lines changed in the Makefile
• Little or no change in the code

• If necessary, can be isolated with #ifdef __MIC__ … #endif
• e.g. MIC does not know how to sleep()…

A programming framework for data streaming on the Xeon Phi - CHEP'16 15

CC=icc
AR=xiar -qoffload-build
CFLAGS= -qoffload-attribute-target=mic

MIC pitfalls and hints … things to consider
• I/O optimization

• Memory pre-allocation / alignment
• Mapping / handling of persistent buffers in CPU and MIC memory
• For indirect memory mapping between CPU and MIC, use #pragma offload into targetptr
• Group data transfer (e.g. 32 at a time)
• Asynchronous offload (transfer / compute) to avoid idling during transactions (like double

buffering)
• All data moves are initiated from CPU side, asymmetric handling of transfers

• Thread scheduling
• Delay vs. sleep vs. yield
• Start persistent threads on MIC with #pragma offload signal()

• Debugging offload sometime difficult with wild data pointers
• Same piece of source code runs on CPU and MIC… match address to variables not always easy

• A framework taking care of these issues is good value for end-users !

A programming framework for data streaming on the Xeon Phi - CHEP'16 16

Summary

• MIC offload optimization is not easy but possible

• Programming and runtime framework available
• Provides simple way to implement and run user code on MIC
• Provides distribution of data stream chunks to the cores
• Running on many cores (MIC or CPU)
• Low framework overhead, good scalability measured
• Hides MIC offload tricks
• Allows to focus on the processing algorithms optimization on target hardware

• Status
• Prototype, good enough to perform benchmarks and test different hardware
• Will be used to evaluate KNL PCIe for ALICE O2
• Might be extended further (lots of ideas on the “to-do list”: NUMA, etc)

A programming framework for data streaming on the Xeon Phi - CHEP'16 17

Backup

A programming framework for data streaming on the Xeon Phi - CHEP'16 18

Performance of the building block

CPU < 1 % up to 50KHz
CPU < 10 % up to 1MHz

10-30 MHz maximum

CPU distribution with numactl

0

50

100

150

200

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

CP
U

 u
sa

ge
 (%

)

Throughput (Hz)

CPU usage as function of FIFO throughput
Skylake - threads on different cores
Skylake - threads on same core
Sandy Bridge - threads on different cores
Sandy Bridge - threads on same core

A programming framework for data streaming on the Xeon Phi - CHEP'16 19

MIC i/o

• 6.4 GB/s in or out when data chunks big enough (250kB)
• Maximum 100-200k transfers/s

0

1000

2000

3000

4000

5000

6000

7000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

M
B/

s p
er

 st
re

am

Packet size

KNC offload i/o speed - 31S1P – PCIe 2.0

1 stream in

2 stream in

1 stream in, 1 stream out (concurrent)

1 stream in, 1 stream out (alternated)

1 stream in, 1 stream out
(asynchronous)

A programming framework for data streaming on the Xeon Phi - CHEP'16 20

Offload thread loop

• All data moves are initiated from CPU side
1. Get list of buffers available at output
2. Move CPU->MIC a block of buffers available at input
3. Move MIC->CPU a block of buffers available at output

• 1-2-3 instead of 2-1-3 : 1 needs MIC exec (in-exec-out), can be done
asynchronously while 2 (data-transfer in only)

A programming framework for data streaming on the Xeon Phi - CHEP'16 21

	Slide Number 1
	Outline
	ALICE Online-Offline project (O2)
	What’s a Xeon Phi ?	
	How to use a Xeon Phi ?
	Rationale
	Purpose of the framework
	Building blocks for processing pipeline
	Architecture of a thread pool engine
	Adaptation of thread engine to MIC PCIe
	From user’s perspective
	An example use case
	Framework use case: BZIP benchmark (native exec)
	Framework use case: BZIP benchmark (MIC PCIe)
	Writing native code for MIC
	MIC pitfalls and hints … things to consider
	Summary
	Backup
	Performance of the building block
	MIC i/o
	Offload thread loop

