C++ Software Quality in the ATLAS
experiment: Tools and Experience

Stewart Martin-Haugh (STFC - Rutherford Appleton Lab. (GB)) Stefan Kluth (Max-Planck-Institut fir Physik (Werner-Heisenberg-Institut) (D))
Rolf Seuster (University of Victoria (CA)) Scott Snyder (Brookhaven National Laboratory (US)) Emil Obreshkov (University of Texas at Arlington
(US)) Shaun Roe (CERN) Peter Sherwood (University College London (UK)) Graeme Stewart (University of Glasgow (GB))

ATLAS Software:
~6 000 000 lines of Code; 140 Teams; 420 Developers; 2 Software Quality Coordinators

Information: TWikis provide education, coding tips, access to tools.
Tools: Continuous build, Static Analysis (Coverity®,cppcheck), Sanitizers, gcc plugins, Unit tests,
“lizard”.

Wiki > Co Wi lasCom ftw: tru eal ity TWiki sComputing
(-06-0:) - Web > AtlasComputing > SoftwarelnfrastructureTeam > CodeOptimizationTips (2016-07-24, ShaunRoe)
‘JEdit Attach PDF {JEdit | Attach PDF| ‘ - , - - - N
e Tront line’ In malntalnlng
- - Dacumentitr .
IKIS ft ity 1s ed i d
|] | |
| awareness. | VWikis prowde d
| |
tre il: Wha do? .S
@ ATl As Jump Hﬁ w Search ng (PA RS) Lesf : £D) -
‘+ Atlas All webs cese
2 = structured navigable access to
— i
4 ShaunRoe TWiki > m AtlasComputing Web > AtlasComputing > CoreSoftware > SoftwareQuality Iﬁtl:ﬁyr;?n ‘ \ aresd b
- LOg Out (2016-07-20, ShaunRoe) h Jowiki hiwiki/binfview/AtlasC ing/AtlasC) s which are largel for gral comes to cod |sagtion(). however u u
i ttps://t . . T t t t t shou a rem: rst m: ur code ake it clear
— et information and tools for the
ca ould yor g com| ce: ecific designi eed; our
code i ed to diff CESSOrs lard ly ham fforts to evaluate
ATLAS Collaboration = : rms.
Software Quality
W

ATLAS TWiki
ATLAS Protected
ATLAS Computing
Public Results

Information

Software Tutorial

ATLAS coding standards 7
Code opimization

Tools
Coverity
CppCheck
Uncrustify
lizard

Build and Analysis Results
NICOS nightly builds 7
Coverity results
CppCheck results

Lizard results 7

¢ Introduction
4+ Just starting with C++ and/or Athena

+ Working with existing code
+ Beautiful code NEwW
+ Checking code
+ Static Analysis
+ Cyclomatic Complexity NEW
+ Debugging
+ Profiling code
+ Unit tests
+ Integrated Development Environment
+ Resources
+ Atlas TWikis for improving your code
+ Books
+ e-Books

+ Coding Standards
+ Web resources

developers, but it is challenging to
maintain awareness of the

[JEdit Attach PDF

CppCheck

+ Introduction
+ Using cppcheck
+ Options
+ Technical details
+ Running locall ly
+ Results History - -
. . . .
_ ATLAS C++ coding guidelines, version 0.2
s IMpPportance o1 sortware quali e
pcheck 7 is an open source tool to perform static anal of C++ cods ich reveals codi ITO! .
such as invalid logic statements, memory lea dices ol bound: 1 IntrOduCtlon =
Using cppcheck This note gives a set of guidelines and recommendations for coding in C++ for the ATLAS experiment.
n Atlas, cppcheck is run twice per week ol v nightly (started 10 May 2016; previously, it was run [} [} [[]
lease kit since November 2015) ime time erity scan. A summary of the There are several reasons for maintaining and following a set of programming guidelines. First, by following some rules, one can avoid
nd links to the errors as highlighted lines of code from the cppcheck statistics 2 some common errors and pitfalls in C++ programming, and thus have more reliable code. But even more important: a computer program
page. Contrary to the Coverity runs, no ei currently ser levelopers on the basis of the should not only tell the machine what to do, but it should also tell other people what you want the machine to do. (For much more
results. elaboration on this idea, look up references on *"literate programming," such as [1].) This is obviously important any time when you have
The Gaudi project s currently exclu ded. many peop1§ yvorking on a given piece of software, am_i sqch considerations would naturally lead to cof{e that is easy to r_ead and understand.
Think of writing ATLAS code as another form of publication, and take the same care as you would writing up an analysis for colleagues.

This document is derived from the original ATLAS C++ coding standard, ATL-SOFT-2002-001 [2], which was last revised in 2003. This
i i m work done by the CERN **Project support team" and SPIDER project, as dc d in CERN-UCQ/1999/207 [3].
These previous guidelines have been significantly revised to take into account the evolution of the C++ language [4], current practices in

€Se
ATLAS, and the experience gained over the past decade.

Issues with the introduction of new

https//tW|k|cemCh/thkl/b|n/V|eW/AtIasComputlng/CppCheck Some additional useful information on C++ programming may be found in [5], [6], and [7].

+ Software Quality Metrics
+ Atlas tutorials
+ Software Quality Coordinators

= Index
& Changes
1 Notifications

Introduction

This page aims to bring together resources which encourage developers to write better code in the
Atlas coding environment. You will find links to tutorials, coding guidelines and articles related to
code development, as well as tips and tools to facilitate the coding process. If you are developing
code in Atlas, it is worth remembering that your code is the most visible component of your individual
expertise; as such it pays to ensure you are writing high quality, well documented code!

https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/SoftwareQuality

Top level access

Nightly Build

Atlas Nightlies Global Summary

also available. The description of nightly branches can be found at Nightly Build Summary twiki page. Many ATLAS releases are tested in-depth in RTT Testing framework.
Build nodes status. NEW: Nightlies restart panel.

Show ASG branches

Message of the day about nightlies problems and usability

Send questions about the ATLAS Nightly System to the new nightlies users mailing list

1 SEP 2016: rel_4 of 21.0.X branch was not built (build machine outage)
15 AUG 2016: rel_0 and rel_1 of 20.11.0.Y-VAL-P1HLT, 20.8.X-VAL(debug) were not built (build machine outage)

I AL

TC Rel Ave. Ave.
Platf/ . on KIT INST CVMFS Comp. Test OK
Skeash Rel “po and TC. | Bulld: | srg RPM KV KV Err. (no
9 (w/warn) warn),%
DEVELOPMENT GROUP: |
20.99.Y-VAL rel_4 112 20.99.0 ggj‘ssgzP olo olololo ollo 5.0 (312) 73 (66)
08-SEP 08-SEP
21.0.X rel 4 2/13 21.0.6 0812 08510 0[] o o o - 73 (65)
08-SEP 08-SEP
21.0.X-VAL rel_4 2/13 21.0.6 06:47 07:120| AR oo 4.5 (350) 78 (71)
08-SEP 08-SEP
22.0.X rel_4 2/13 22.0.0 09:34 09:45 0 o o o 2.0 (578) 73 (63)
08-SEP 08-SEP
22.0.X-VAL rel_4 3/13 22.0.0 06:20 06:37 0| LRI oo - 71 (63)

This note is not intended to be a fixed set of rigid rules. Rather, it should evolve as experience warrants.

tools or presentation of the issues

at collaboration weeks. Thus

= S —— novelty and continuous discussion
are important to maintain

motivation.

2 Naming

This section contains guidelines on how to name objects in a program.

TWiki > m AtlasComputing
Web > AtlasComputing > CoreSoftware > SoftwareQuality > CyclomaticComplexity
(2016-06-01, ShaunRoe)

2.1 Naming of files

JEdit Attach ‘ PDF ‘ o Each class should have one header file, ending with *.h'', and one implementation file, ending with **.cxx"'. [source-naming |

) . Some excepti Small classes used as helpers for another class should generally not go in their own file, but should instead be
Cyc|0matlc Complex|ty placed with the larger class. So'metime's several very closely rel classes may be grouped together in a single ﬁ'le; in that case, the
files should be named after whichever is the “*primary" class. A number of related small helper classes (not associated with a
+ Introduction paﬁcu larg ss) may be grouped together in a sin iven a descriptive name. An example of the latter

+ Technical instructions

Introduction

Cyclomatic Complexity is variously used as a general indication of code maintainability/testability; more
controversially, it is also used as an indication of code quality. This article gives an outline of what the
number means and acceptable ranges, and describes the ‘lizard' tool we use to measure it in Atlas.

Information

Explanation

M

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/CyclomaticComplexity

Tools

Nightly Builds are performed across different compilers (e.g. Clang, gcc49),
and developers are informed of errors by email.

'n addition, custom gcc plugins have been written to check for violation of
internal standards (e.g. naming conventions, inheritance conventions)

he Undefined Behaviour Sanitizer (UBSan) is active in debug builds (one
example: left shift of negative number).

Unit tests are performed as part of the build, including (more recently) tests in
the GoogleMock framework which allow testing of complex objecis.

As a final step, Run Time Tests provide physics parameters (e.g. pT or angular distributions) as a holistic test of the
software for comparison against known references

Static Analysis: Coverity®, cppcheck, lizard

Coverity and cppcheck are run twice-weekly. Coverity
reports are sent once per week to developers. ‘Lizard’
provides cyclomatic-complexity and line count metrics

7000

— Coverity total
Coverity hi
Coverity med
---- Coverity lo

Bar Chart of Defects by Software Domain

6000 —
07/09/2016

The following bar chart illustrates the number of (high, medium, low) impact defects for each Atle
the Coverity database on the date indicated above.

==== CppCheck total

5000

League tables are also available for only high impact defects and high + medium impact defects.

Trig-EDM (9;74;71)
Trig-InDet (0;117;21),
Monitoring-Alldomains (1;99;13)

Increased file coverage

I

Muon-Reconstruction (4;87;3) 4000 -
Trig-Core (10;48;35)
Trig-Muon (8;64;18)
JetEtmiss-Jet (2;81;7)
InDet-Pixel (6;55;28)
Trig-L1Muon (6:42;37)
Trig-FTK (0;44:36)
InDet-Tracking (0;75;1)
Trig-HLTCalo (4;50;14)
InDet-Vertexing (11;36;19),
on-Conditions (10;54;2)
Trig-Config (6;51;7)
InDet-EDM (0;56;0)
InDet-TRT (0;46;9)

Defects

3000

2000 -

1000 —fitan

Update compiler to 4.9.5
Update Coverity to 7.7

Update build sytem to CMake

Update release to 21, then 22

(Defect figures unreliable in this period)

1/1/15 1/4/15

The Future

1/7/15

I I | [
1/10/15 1/1/716 1/4/16 1/7/16

Date

which can be useful to spot rotten code. These tools all
have results presented as a league table of defects per
software team, intended to motivate the teams. Coverity is
the most comprehensive, and has resulted in many defects
being found; the progress over time is shown left. Current
defect densities are 0.2 - 0.8 defects/1000-lines-of-code

ATLAS is migrating from SVN to Git, which allows a formal code review before acceptance into the repository. The tools
shown above will likely form one input to the review process, but finally code quality depends on the developers motivation
and the reviewers conscientiousness.

https://indico.cern.ch/event/505613/contributions/2228507/author/2595885
https://indico.cern.ch/event/505613/contributions/2228507/author/2595890
https://indico.cern.ch/event/505613/contributions/2228507/author/2595883
https://indico.cern.ch/event/505613/contributions/2228507/author/2595887
https://indico.cern.ch/event/505613/contributions/2228507/author/2595884
https://indico.cern.ch/event/505613/contributions/2228507/author/2595886
https://indico.cern.ch/event/505613/contributions/2228507/author/2595889
https://indico.cern.ch/event/505613/contributions/2228507/author/2595888
https://indico.cern.ch/event/505613/contributions/2228507/author/2595885
https://indico.cern.ch/event/505613/contributions/2228507/author/2595890
https://indico.cern.ch/event/505613/contributions/2228507/author/2595883
https://indico.cern.ch/event/505613/contributions/2228507/author/2595887
https://indico.cern.ch/event/505613/contributions/2228507/author/2595884
https://indico.cern.ch/event/505613/contributions/2228507/author/2595886
https://indico.cern.ch/event/505613/contributions/2228507/author/2595889
https://indico.cern.ch/event/505613/contributions/2228507/author/2595888

