Assessment of Geant4 Maintainability with respect to Software Engineering References
Elisabetta Ronchieri¹, Maria Grazia Pia², Marco Canaparò¹

¹INFN CNAF - 40123 Bologna Italy; ²INFN Genoa - 16146 Genoa Italy

Questions
1. Can we use software metrics references to effectively assess the maintainability of a large scale physics software system?
2. Can statistical methods drive us to select proper software metrics for Geant4?

Background
- We adopted software quality standard, ISO/IEC 25010:2011 (former ISO/IEC 9126) [1], to identify software characteristics related to the maintainability factor.
- We identified and assessed software metrics tools to collect a large number of measurements of software characteristics [2].
- We exploited a set of product metrics to assess the code status [2].

Methodology

STEP 1 get access to the Geant4 web site
https://geant4.web.cern.ch/geant4-support/download.html

STEP 2 loading of the Geant4 source code into Imagix 4D

STEP 3 saving of all the collected data at different levels of granularity

STEP 4 addition and removal of fields in the cvs files

STEP 5 application of different statistical methods using R packages, such as lme4 and randtests

STEP 6 selection of references among relevant peer-reviewed papers, conference proceedings and technical reports [3]

STEP 7 comparison of the Geant4 measures with the references

A sample of results

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Ref.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIT (Depth of Inheritance Tree)</td>
<td>6</td>
<td>M. Lorenz and J. Kidd, Object-Oriented Metrics, Englewood, NJ: Prentice Hall, 1996</td>
</tr>
<tr>
<td>RFC (Response for a Class)</td>
<td>2.58</td>
<td>R. Malhotra and A. Jain Bansal, Fault prediction considering threshold effects of object-oriented metrics</td>
</tr>
<tr>
<td>WMC (Weighted Methods per Class)</td>
<td>3</td>
<td>L. H. Rosenberg, Applying and Interpreting Object-Oriented Metrics, Proc. Software Technology Conf.</td>
</tr>
<tr>
<td>CB (Coupling Between Object class)</td>
<td>5</td>
<td>L. H. Rosenberg and T. Hammer and J. Shaw, Software Metrics and Reliability</td>
</tr>
<tr>
<td>NC (Number of Children)</td>
<td>3</td>
<td>McCabe</td>
</tr>
<tr>
<td>NMM (Number of Member Methods)</td>
<td><20</td>
<td>McCabe</td>
</tr>
<tr>
<td>MM (Maintainability Index)</td>
<td>>60 poor maintainability >50, 64, fair maintainability >45, excellent maintainability</td>
<td></td>
</tr>
<tr>
<td>MDC (McCabe’s Maximum Cylomatic Complexity)</td>
<td><5</td>
<td>McCabe</td>
</tr>
</tbody>
</table>

Conclusion
- The use of metrics references contributes to interpret the internal quality of Geant4 software.
- Further investigation is in progress to identify appropriate ranges of metric values for scientific software.
- Statistical methods are valuable to identify the set of metrics that are most significant for a given Geant4 package.
- In future work we are going to explore other econometric/ecology concepts and techniques for the analysis of metrics data.

References

Acknowledgements
The authors thanks Francesco Giacomini for technical discussions and INFN CCR for partly funding this work. We also thank the Imagix Corporation that provided an extended free full license of Imagix 4D for performing this work and CERN library for providing papers and books.

Contacts
Elisabetta Ronchieri, elisabetta.ronchieri@cnaf.infn.it
Maria Grazia Pia, mariagrazia.pia@infn.ge.it
Marco Canaparò, marco.canapar@cnaf.infn.it