

Assessment of Geant4 Maintainability with respect to **Software Engineering References**

Elisabetta Ronchieri¹, Maria Grazia Pia², Marco Canaparo¹

¹INFN CNAF - 40123 Bologna Italy; ²INFN Genoa - 16146 Genoa Italy

Questions

- 1. Can we use software metrics references to effectively assess the maintainability of a large scale physics software system?
- 2. Can statistical methods drive us to select proper software metrics for Geant4?

Background

- We adopted software quality standard, ISO/IEC 25010:2011 (former ISO/IEC 9126) [1], to identify software characteristics related to the maintainability factor.
- We identified and assessed software metrics tools to collect a large number of

measurements of software characteristics [2].

We exploited a set of product metrics to assess the code status [2].

A Maintainability Index:

Maximum McCabe Cyclomatic Complexity at class level:

000 0 0 0

00000

A subset of Chidamber and Kemerer object-oriented metrics:

geometry/navigation

Geant4 version

Class)	[21, 100] moderate high values>100 very high values	NASA SATC
	<100	L. H. Rosenberg and T. Hammer and J. Shaw, <i>Software Metrics and reliability</i>
CBO (Coupling Between Object class)	<5	L. H. Rosenberg, <i>Applying and Interpreting Object-Oriented Metrics</i> , Proc. Software Technology Conf.
	<7	R. Malhotra and A. J. Bansal, Fault prediction considering threshold effects of object-oriented metrics
NC (Number of Children)	3	McCabe
NMM (Number of Member Methods)	<=20	<u>CppDepend</u>
MI (Maintainability Index)	<65 poor maintainability [65, 84] fair maintainability >=85 excellent maintainability	Coleman and Lowther and Oman, The application of software maintainability models on industrial software systems
MCMCC (McCabe's Maximum Cyclomatic Complexity)	[1, 10] low cc [11, 15] medium cc [16-30] high cc >31 very high cc	<u>CppDepend</u>
	[1, 10] low cc [11, 20] medium cc [21. 50] high cc >51	McCabe

software metrics. J. Phys. Conf. Series, vol. 664, p. 062053, 2015 [4] E. Ronchieri, M. Canaparo. A Preliminary Mapping Study of Software Metrics Thresholds. Proc. of ICSOFT-EA 2016: 232-240

Acknowledgements

The authors thanks **Francesco Giacomini** for technical discussions and **INFN CCR** for partly funding this work. We also thank the **Imagix Corporation** that provided an extended free full license of Imagix 4D for performing this work and **CERN library** for providing papers and books.

Contacts

Elisabetta Ronchieri, elisabetta.ronchieri@cnaf.infn.it Maria Grazia Pia, mariagrazia.pia@infn.ge.it Marco Canaparo, marco.canaparo@cnaf.infn.it