Evaluation of clustering algorithms at the <1GeV energy scale for the electromagnetic calorimeter of the PADME experiment Emanuele Leonardi¹, Gabriele Piperno², Mauro Raggi^{1,3} ¹INFN Roma, ²INFN LNF, ³Sapienza University of Rome ## The PADME experiment - PADME (Positron Annihilation into Dark Mediator Experiment) will look for invisible production of the A' dark photon with mass up to 24 MeV in the annihilation channel $e^+e^- \rightarrow A'\gamma$. - It will use a 550 MeV e⁺ beam from the DAFNE Beam Test Facility (BTF) interacting with a thin diamond target. - Goal: collect O(10¹³) e⁺ in 2018-2019 - The recoil γ is detected by the e.m. calorimeter - 616 2.1x2.1x23cm³ BGO crystals from the L3 e.m. endcap - PMT readout, - Angular coverage: ~ 20-93 mrad. - Energy resolution: $< 2\%/\sqrt{E}$ - Spatial resolution: ≤ 5 mm - Time resolution: $\approx 500 \text{ ps}$ ## PADME clustering algorithms - The crystal clustering algorithm is crucial to optimize the calorimeter's resolution. - Two different clustering strategies are being tested: - Radius algorithm: collect all crystals within a given radius from an energy maximum. - Island algorithm: start from a local energy maximum and attach adjacent crystals of lower energy. - These algorithms have been included in the PADME general software framework and have been tested both on real data from testbeams and on MC events.