
Microservices for Systematic Profiling and Monitoring of the Refactoring
Alexander Mazurov, Ben Couturier

LHCb Performance and Regression Tests
(LHCbPR) - systematize profiling that helps
developers to evaluate how their recent code
changes behave in provided test cases for
different setup environments.

Main use cases
• Physics performance
• Histogram comparison
• Trend analysis for selected attribute.

• Monitor regression in memory and CPU
consumption

Possible setup environments
• Versions of application
• Compiler versions
• Operating Systems (SLC6, CentOS7)
• Architecture (x86_64, x86)
• Build system (CMT or CMake)

• LHCbPR not coupled to the LHCb software stack and can be adapted for other experiments and projects
• We are working on extending repository of web components and analysis modules for web frontend.
• Easy to develop new clients for API service.

CHEP 2016 1

Jenkins CI Test
server

Artefacts
storage

LHCbPR API
backend service

LHCbPR
Database

download
builds

Storage
Element

save results
set

status

pull test
results

save

LHCbPR Client
(Web app, cli,…)

get test’s setup and parameters

ROOT HTTP
service

run

run tests

request data

select data

response data

request data
from ROOT

files
get ROOT files

response
as JSON

Build and Test Services LHCbPR v2 Services User Clients

RUN TESTS

PULL TEST RESULTS

REQUEST RESULTS

REQUEST DATA FROM ROOT FILES

1. Build and Test Services

• Continuous Integration (CI) Service – schedule

and initiate test runs

• Artifacts Storage– store projects builds for

different configurations

• Test service – read LHCbPR configuration for

tests, download the corresponding builds, execute

tests and transfer it to the Storage Element

• Storage Element – virtual storage for jobs output

with the interface to quite diverse real storage

systems like grid storage.

2. LHCbPR v2

• Database – relational database for job

descriptions and job outputs. We use MySQL, but

it can be any other.

• REST API service – provides REST access to

the database and adds some business logic for

special API requests. Technologies: python,

Django + REST Framework.

• ROOT HTTP service – helper service for

returning content of ROOT files in JSON format.

Relies on ROOT TBufferJSON.ConvertToJSON

functionality. Technologies: Flask , ROOT.

3. User Clients

• Users can create any data handling client that use

LHCbPR REST API: web applications, scripts

• We created web frontend for visualizing

regression tests' results. Technologies:

javascript, angular framework; nodejs and

gulp for development.

Deployment Web Frontend

• Web frontend is a javascript

single-page application that is

composed of analysis modules

for presenting specific logic and

views for inspecting test results.
• Each analysis module is an

application extension and can

be simply added or removed

without breaking the main

application
• Common web components are

provided for building modules.

For example, search jobs and

draw histograms.
CHEP 2016 2

API Service

