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LHCb Performance and Regression Tests 
(LHCbPR) - systematize profiling that helps 
developers to evaluate how their recent code 
changes behave in provided test cases for 
different setup environments.

Main use cases
• Physics performance
• Histogram comparison
• Trend analysis for selected attribute.

• Monitor regression in memory and CPU 
consumption

Possible setup environments
• Versions of application
• Compiler versions
• Operating Systems (SLC6, CentOS7)
• Architecture (x86_64, x86)
• Build system (CMT or CMake)

• LHCbPR not coupled to the LHCb software stack and can be adapted for other experiments and projects
• We are working on extending repository of web components and  analysis modules for web frontend.
• Easy to develop new clients for API service.
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1. Build and Test Services 

• Continuous Integration (CI) Service – schedule 

and initiate test runs

• Artifacts Storage– store projects builds for 

different  configurations

• Test service – read LHCbPR configuration for 

tests, download the corresponding builds, execute 

tests and transfer it to the Storage Element

• Storage Element – virtual storage for jobs output 

with the interface to quite diverse real storage 

systems like grid storage.

2. LHCbPR v2

• Database – relational database for job 

descriptions and job outputs. We use MySQL, but 

it can be any other.

• REST API service – provides REST access to 

the database and adds some business logic for 

special API requests. Technologies: python, 

Django + REST Framework.

• ROOT HTTP service – helper service for 

returning content of ROOT files in JSON format. 

Relies on ROOT TBufferJSON.ConvertToJSON 

functionality. Technologies: Flask , ROOT.

3. User Clients

• Users can create any data handling client that use 

LHCbPR REST API: web applications, scripts

• We created web frontend for visualizing 

regression tests' results. Technologies: 

javascript, angular framework; nodejs and 

gulp for development.



Deployment Web Frontend

• Web frontend is a javascript 

single-page application that is 

composed of analysis modules 

for presenting specific logic and 

views for inspecting test results.
• Each analysis module is an 

application extension and can 

be simply added or removed 

without  breaking the main 

application
• Common web components are 

provided for building modules. 

For example, search jobs and 

draw histograms.
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