
CERN Organisation
Europeenne pour la
Recherche Nucleaire
CH-1211 Geneve 23
Switzerland

LHCb migration from Subversion to Git

marco.clemencic@cern.ch

Abstract

Because of user demand and to support new development workflows based on code review and multiple development streams, LHCb decided to
port the source code management from Subversion to Git, using the CERN GitLab hosting service.
Although tools exist for this kind of migration, LHCb specificities and development models required careful planning of the migration, development
of migration tools, changes to the development model, and redefinition of the release procedures. Moreover we had to support a hybrid situation
with some software projects hosted in Git and others still in Subversion, or even branches of one project hosted in different systems.
We present how we addressed the special LHCb issues, the technical details of migrating large non standard Subversion repositories, and how
we managed to smoothly migrate the software projects following the schedule of each project manager.

Strong demand by developers for Git support in LHCb, but…

LHCb Software is organized in
interdependent projects
Common libraries, applications
(simulation, reconstruction, analysis, …)
Projects subdivided in packages
Special tool to checkout all packages
in a project release

Custom layout of Subversion repository
One repository with many projects
Tags and branches created at package level

Transition

Integration with LHCb Nightly Builds

Extended Nightly Builds checkout scripts
to allow checkout from Git
and automatically apply

relevant GitLab merge requests
to the checked out branch.

M. Cattaneo, M. Clemencic, J. Closier and B. Couturier on behalf of the LHCb Core Software Team

Summary

The migration of LHCb Software
Projects from Subversion to Git
started in March 2015 with the
first mirrors of a few projects.

Early 2016, we defined
development workflows and
prepared the required custom
tools.

At present, only a few special
cases have not migrated yet.

Allowing users to develop with
Git increased productivity
(number of contributions,
new projects) and code quality
(testing and reviews).

Subversion
repository

Git repository
on GitLab

Create a mirror
with released tags

Connect SVN with Git
via git-svn tool

Automatic cross
synchronization

Clean up content
 of trunk

DevelopmentDevelopment

Close write
access

Development

SVN commits
converted to Git commits

GitLab Merge Requests
converted to SVN commits

SVN decommisioned
project-by-project

Definition of development workflows

Moved from a workflow based on
direct commits to SVN,
to a workflow based on

production and development branches,
and merge requests with code review.

Development on partial checkouts

Implemented a couple of Git subcommands
to allow sparse checkouts of multiple projects

in one Git managed workspace/repository
and push local history of changes

to the main repositories.

Requirements for
the migration

Smooth/adiabatic transition
Integration with
LHCb Nightly Builds

Support development
with partial checkout

Definition of
development workflows

	Diapositiva 1

