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A research question

I Theoretical foundations and tool
I Computational Geometry

Vantage point trees
Metric trees

I Parallel algorithms
Contraction algorithms
Accumulation trees

I Parallel architectures
Multi-core
GPGPU and extended device computing
Distributed memory archittecures

I The research question
How effective can the algorithms and data structures of theorectical parallel
computing be when applied to practical problems in high dimensional
domains.

High dimensional data processing examples

I Clustering well separated regions to improve computational efficiency

I Clustering well separated blocks of points to improve line detection.
Possible figure here showing OpenCV HT failure

I Higher order visualization and sequence matching in DNA or data mining in
time series.
Sergey Brin (before Google): A ball of radius 2 in 20 dimension Euclidean
space is a million times larger in volume than a ball of radius
Metric trees can reduce partition the space.

Computational Geometry data structures

I Data separation principles

I Mathematically well founded
I Implemented using metric trees, or quad-trees.
I Example: n-body tree codes.

A particle is well separated from a region when s/d < θ for
s, the width of the region
d , distance between the paricle and the centre of mass of the region
θ, a given parameter.
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I Problems
I Parallel algorithm to extract pairs separated regions and particles.
I Parallel accumulation algorithms. Accumulation can be:

FMM Taylor expansion;
Accumulation of force and mass in Barnes-Hut;
Binning (vote counting) in algorithms for variations of Hough Transform.

Trees for high dimensional data

I Target
I Indexing to reduce width, exponentially reduce volume.

I Balancing of construction to optimize sharing of parallel workload.
I Data structures to separate high dimensional data

I Octrees, and quadtrees tend to be inefficient in space and parallel work balancing;
I k-d-trees can become unbalanced or have irregularly split regions;
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A grid-like structure over the search
space

Many nearly empty spaces/trees

I Metric and vantage-point tree might offer round regions and binary trees good for
upward and downward accumulation.

Metric trees

I Binary search tree.
I Indexed by distance.
I A node defines a sphere of the points living within a distance from its centre.
I Axioms that regulate the construction of a mertic tree

I Each node is define by a central point C, a radius r , left and right subtrees.
I Points on the left subtree are within a distance r from C.
I Points on the right subtree are outside distance r from C.
I Central point is any point in the indexed set.
I Radius is the median of distances to that central point.

I Observations:
I Each node is weight balanced.
I Each node can be split with linear work, if we assume that a median can be computed

with linear work.

Point separation

I Two sets of points P and Q are separated when
max(diam(Q), diam(R))

d(Q, R)
< θ

I A separated pairs decomposition of a set P is a set of pairs (Ai, Bi)} where
I each Ai, Bi ⊂ P
I Ai and Bi are θ-separated.

I Parallel complexity
An O(n lg n) work parallel algorithm with depth O(lg n) can be defined
based the observation that:
I if sets P and Q are not separated then the separation set of P and Q is given by the

separation sets of P0 and Q and P1 and Q, where P0 and P1 are children of Q.

N-body tree code

I Algorithm: each Physical time step simulated by a sequence of three
paralle bulk steps.
I In parallel: build a metric tree.

Complexity: Computation with depth lg n.
I In parallel: build separated sets.
I In parallel: for each pair (Ai, Bi), apply cell to cell computation to evalute force, centre of

mass, position.
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