

Memory handling in the ATLAS submission system

Alessandra Forti CHEP2016 October 2016

- Memory Problem
- Memory changes in ATLAS and elsewhere
- Memory in the OS
- What Batch systems do
- PandaQueues setup
- From ATLAS to Kernel
- Memory monitoring
- Inside ATLAS
- Brokering
- Lost heartbeat
- Conclusions

Problem

- Batch systems work better if jobs pass parameters about the resource requirements
 - Used for internal scheduling and for limiting excessive usage
- Pilot system is a late binding system
 - Whatever the payload requirements it passes uniform requirements to the batch systems on the grid
 - Working when payloads were more uniform
 - Single core below 2GB memory
 - Now single core, multicore, himem, lowmem
 - Required a re-think

Memory evolution

- 4 major changes have affected memory handling
 - Increased size of the events
 - more memory consumed
 - $32bit \rightarrow 64bit$
 - Further increased the memory footprint
 - Introduction of multicore
 - it reined the total memory per core but it creates a new category of jobs with larger memory requirements
 - Redefinition of vmem in the kernel and shared mem reporting
 - vmem \neq ram + swap becomes irrelevant as a quantity
 - Even traditional OS tools (ulimit) don't report correct values
 - Older batch systems still use old definition/tools
 - Multi core jobs shared memory not correctly reported by traditional OS tools

Memory according to the OS

- Memory definition is changing
 - Vmem: memory mapping in 64bit can be several times the actual memory used.
 - Smaps RSS: physical memory used by a job double counting the memory shared with other jobs
 - Different from cgroups RSS
 - Smaps PSS: physical memory used by a job without double counting
 - cgroups RSS: physical memory used by the jobs without double counting
 - Related to smaps PSS

What batch systems do?

- Batch systems **without** cgroups
 - See the same RSS as reported in smaps
 - Kill on vmem which is **NOT** a physical memory measure
 - If you insist on this you need to set it at least 3 times the RAM requested by the job
- Sites with cgroups
 - Can setup soft and hard limits on the values the job reports
 - Soft limit allows the kernel to decide if the job can keep on using the extra RAM or has to swap
 - Hard limit will kill the job based on RAM
 - Often set to 2 or 3 times the RAM requested by the job

MANCHESTER

1824

PandaQueues Setup

- The parameters the pilot passes to the batch system are taken from the site configuration of the brokering system called PandaQueues
 - Each site has a number of PandaQueues with different parameters
 - Once 1 queue for analysis and 1 queue for production
 - Now more are needed
 - A new combination of params means a new queue
 - Seems a lot but eventually the matrix of possible values is not large
 - Estimates of the parameters values are not exact values

MANCHESTER

From ATLAS to kernel

Experiment

MANCHESTER 1824

Experiments	corecount	rss	rss+swap	vmem	cputime	walltime
ATLAS old	corecount	maxmemory	maxmemory	-	maxtime*ncores	maxtime
ATLAS current	corecount	maxrss	maxrss+maxswap	-	maxtime*ncores	maxtime

Had to track the whole chain before any changes

Computing Elements

Computing Element	corecount	rss	rss+swap	vmem	cputime	walltime
CREAM-CE Glue1	JDL: CpuNumber= corecount; WholeNodes=false; SMPGranularity= corecount	GlueHostMainMemoryRAMSize	GlueHostMainMemoryVirtualSize	GlueHostMainMemoryVirtualSize(*)	GlueCEPolicyMaxCPUTime	GlueCEPolicyMaxWallClockTime
CREAM-CE Glue2	JDL: CpuNumber= corecount; WholeNodes=false; SMPGranularity= corecount	GLUE2ComputingShareMaxMainMemory	GLUE2ComputingShareMaxVirtualMemory(*)	GLUE2ComputingShareMaxVirtualMemory(*)	GLUE2ComputingShareMaxCPUTime	GLUE2ComputingShareMaxWallTime
	(count = corecount) (countpernode = corecount)	memory(*)	-	memory(*)	cputime	walltime
HTCondor-CE	xcount	maxMemory	N/A	N/A	N/A	maxWallTime

Batch systems

Batch system	corecount	rss	rss+swap	vmem (address space)	cputime	walltime
Torque/maui	ppn	mem	-	vmem	cput	walltime
*GE	-pe	s_rss	-	s_vmem	s_cpu	s_rt
UGE 8.2.0(*)	-pe	m_mem_free	h_vmem	s_vmem	s_cpu	s_rt
HTCondor(**)	RequestCpus	RequestMemory	No default (Recipe)	No default (Recipe)	Recipe	Recipe
SLURM	ntasks,nodes	mem-per-cpu	-	No option	No option	time
LSF	?	?	?	?	?	?

Batch systems to OS

Batch system	rss	rss+swap	vmem	needs cgroups to do sensible things
Torque/maui	-	-	RLIMIT_AS	N/A
Torque/MOAB or PBSPro >=6.0.0	yes	yes	RLIMIT_AS	yes
*GE	-	-	RLIMIT_AS	N/A
UGE >=8.2.0	yes	yes	RLIMIT_AS	yes
HTCondor	yes	in 8.3.1	-	yes
SLURM	yes	-	-	yes
LSF >=9.1.1	yes	yes	RLIMIT_AS	yes

Memory monitoring

- Memory monitoring has been added to all the pilots
 - Extracts values from /proc/<PID>/smaps of all job processes
 - Value used for
 - Brokering
 - Killing of rogue jobs at sites which don't impose limits
 - Systematic studies of jobs

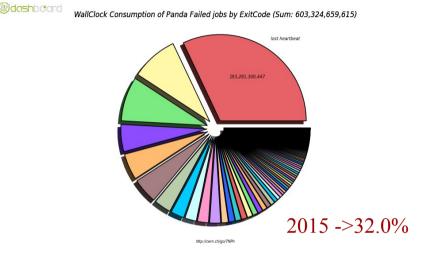
MANCHESTER 1824

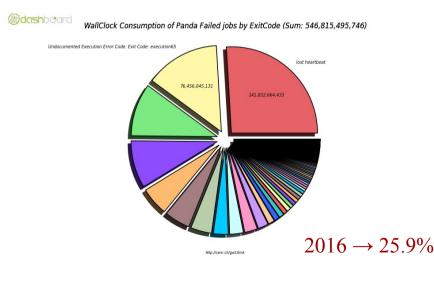
Inside ATLAS

- To use maxrss with correct values sites can setup lo/hi memory PandaQueues.
 - They can be mapped to 1 batch queue with large values but the jobs will be brokered correctly to sites that can handle it
- To support sites that don't kill
 - The pilot kills above a certain threshold
 - Using twice the memory requested
 - Decision taken based on the plots from memory monitoring
 - Applied to both analysis and production jobs
 - Jobs exit gracefully
 - Production jobs are resubmitted to higher memory queues
 - Sooner than when the batch system kills resulting in lost heart beat

Brokering

- Scout jobs sent to T1s to find how much memory the task needs
 - Memory value used to broker is that reported by the scouts as measured by the memory monitor
 - Scouts value compared to PandaQueues memory value to broker the jobs
 - PandaQueue value used for those jobs as memory parameter to pass to the batch system.
 - It's the max the jobs can use
 - Some jobs can use in excess of the scouts value and maybe brokered to queues that kills them
 - The system will re-broker the production ones




Lost heartbeat

• Lost Heartbeat is a catchall error message for when the panda server loses contact with a job for 6 hours

MANCHESTER

- Many causes but a major one is the batch system killing on memory.
- Largest component in wasted walltime
- Since introduction of memory handling in ATLAS and at sites progressive reduction of wasted walltime due to LH.

Conclusions

- One of the longest standing requests from sites is now satisfied
- ATLAS can better distribute the workload
 - The system was designed to support older batch systems that cannot support cgroups and don't handle memory correctly anymore
- The introduction of memory handling has reduced the weight of the "lost heartbeat" error
 - Partly because less jobs die
 - Partly because the errors are now better reported

