Web Proxy Auto Discovery for WLCG

Dave Dykstra
CHEP 2016
10 October 2016
Background - Current WLCG Content Delivery Network

• The WLCG CDN is general purpose web caching proxies
 – Driving factor: Frontier Distributed Database for ATLAS & CMS
 – CVMFS spread very quickly in large part because of the existing squid web cache infrastructure deployed for Frontier
 – Many other smaller use cases take advantage of the squids as well, and more would if the squids were easier to find
 – Centralized monitoring is at wlcg-squid-monitor.cern.ch

• It’s a pretty big problem that ATLAS & CMS separately maintain Frontier client configurations for squid proxies
 – In very different ways
 – Makes it tough to run opportunistically at each other’s sites, and tough for other VOs and applications to take advantage of the caches
Comparison to non-WLCG CDNs

• CDNs on the internet do not depend on smart clients that know how to use forward http proxies
 – Servers are made smarter, and the distributed caching servers (which are often reverse http proxies) all need to be configured to know about the ultimate source of data
 – Often DNS caching is abused to point to different servers in different areas

• It works when all the servers in a CDN are controlled by one entity, but that’s not the grid model
 – The hit rates of the WLCG applications are so high that it usually makes sense to have caches on the premises, especially when they’re as easy to maintain as squid
 – There’s probably a way to distribute configurations that would work with decentralized control, but there’s an easier way
Web Proxy Auto Discovery

• There’s a de-facto internet standard for finding web proxies
 – Supported by all major web browsers
 – Clients try http://wpad/wpad.dat to read a Proxy Auto Config format file, a javascript subset, for example:
    ```javascript
    function FindProxyForURL(url, host) {
      return "PROXY http://squid.aglt2.org:3128";
    }
    ```
 – Can select different values based on destination url or source ip address
 – Open source pacparser library available to interpret, supported by both Frontier and CVMFS
 – Also supported by an open source wget wrapper that I wrote, pacwget
WLCG WPAD

• We extend standard for WLCG: if http://wpad/wpad.dat not found, use http://wlcg-wpad.cern.ch/wpad.dat
 – wlcg-wpad.cern.ch WPAD service now available, using site squids registered in ATLAS AGIS and CMS SITECONF for Frontier
 • Cross-checked against squids registered in GOCDB and OIM (cannot simply use all of those because they may not be adequately sized for an application like Frontier)
 • Gives different responses based on source IP of requester matching a squid at the site that is in the same address range according to the Maxmind GeoIP Organization database
 – GeoIP Org DB maps IP address ranges to organization names
 • First user: CMS opportunistic usage of non-CMS sites in the U.S. using one virtual T3 site
 – Service is running on a pair of large 10Gbit/s physical servers (which also support 4 squid proxy services to the internet)

• Large sites will be encouraged to run their own http://wpad/wpad.dat web service to reduce latency and offload CERN servers
 – Especially if they have multiple squid services at their site
Special cases

• Proxies from ATLAS & CMS don’t all map to a GeoIP Organization, because some are on a private network
 – Public name of squid from GOCDB/OIM for same site, if it is registered, is used instead to identify the GeoIP Org
• Can set or replace proxies for any GeoIP Organization in an exceptions json file on wlcg-squid-monitor
 – Fixing information sources is preferable of course
• There are cases of multiple site names mapping to the same GeoIP Organization with different proxies
 – Will need to distinguish by source IP address ranges, preferably coming from information sources, not exceptions file (only the latter implemented so far)
• Sites can have different squid services for different purposes
 – Selected by shortcuts (e.g. atlas, cms, cvmfs, frontier; defined by config) in exceptions file
• Client-based load-balancing has to be approximated

10 October 2016
Separate services + client load-balancing

// For USCMS-FNAL-WC1; CMS: T1_US_FNAL
functionFindProxyForURL(url, host) {
 if (shExpMatch(url, "*cmsfrontier*.cern.ch") || shExpMatch(url, "/cvmfs/cms*.cern.ch")) {
 ran = Math.random();
 return "PROXY http://squid.fnal.gov:3128";
 }
 return "PROXY http://squid.fnal.gov:3128";
}
LHC@Home WPAD

• Also http://lhchomeproxy.cern.ch/wpad.dat
 – For use by LHC@Home (BOINC) clients
 – A DNS alias for the same server, but it behaves differently for the different requested server (in the Host http header)
 • Returns a list of externally-accessible proxies that are sorted by GeoIP longitude/latitude relative to source IP
 • Currently only includes the proxies configured on the same pair of machines and on lhchomeproxy.fnal.gov
 • Other sites are being recruited to run additional squids for this service around the world

10 October 2016
Future work

• Add retrieving source IP address range from information sources
• Add IPv6 support
• There may be a need to add more distributed servers
 – Would be quite easy to add it to existing similar machines at Fermilab
• At some point there will probably be good reasons to extend the WPAD service to dynamically started proxies in clouds or as grid jobs
 – Probably integrate with Shoal
Conclusion

• There’s now a standard way for any client that needs web caches to find them wherever they run on the WLCG

• Links:
 – https://twiki.cern.ch/twiki/bin/view/LCG/HttpProxyDiscoveryTaskForce
 – http://wlcg-wpad.cern.ch/wpad.dat
 • Optionally add ?ip= to change IPv4 address looked up
 – http://wlcg-squid-monitor.cern.ch/worker-proxies.json
 – https://github.com/pacwget/pacwget