
OPPORTUNISTIC COMPUTING WITH LOBSTER:
LESSONS LEARNED FROM SCALING UP TO 25K
NON-DEDICATED CORES

MATTHIAS WOLF, ANNA WOODARD, PAUL BRENNER, PATRICK DONNELLY,
MIKE HILDRETH, KENYI PAOLO HURTADO ANAMPA, WENZHAO LI, KEVIN
LANNON, DOUGLAS THAIN, BENJAMIN TOVAR, ANNA YANNAKOPOULOS

WHAT IS LOBSTER?
Lobster is an opportunistic
workflow manager, built on top of
CCTools.

2

WHAT IS LOBSTER?
Lobster is an opportunistic
workflow manager, built on top of
CCTools.

Basic idea introduced at CHEP2015
[1] and IEEE Cluster 2015 [2].

[1] http://iopscience.iop.org/article/10.1088/1742-6596/664/3/032035/pdf
[2] http://ccl.cse.nd.edu/research/papers/lobster-cluster-2015.pdf

3

http://iopscience.iop.org/article/10.1088/1742-6596/664/3/032035/pdf
http://ccl.cse.nd.edu/research/papers/lobster-cluster-2015.pdf

ANNA WOODARD

WHY LOBSTER?
• We have access to a lot of CPUs!

• ~25k cores at the Notre Dame Center for Research Computing

• Machines belong to various PIs— available to Notre Dame users
opportunistically

• We have access to Cooperative Computing Lab experts!

• Team at Notre Dame, led by Doug Thain, that develops CCTools suite of
software for large scale distributed systems

• Lobster is an R&D partnership between ND HEP and CS groups, making
progress on general CS research problems in the context of real, complex, and
demanding physics needs 4

ANNA WOODARD

WHY IS THIS HARD?
• The Center for Research Computing is a heterogeneous environment:

• Machines built and configured for owners’ needs— all we can count on is
(mostly) RHEL6

• No OSG environment

• No CMS software

• No root access

• Cluster owners’ jobs evict opportunistic jobs without warning

5

ANNA WOODARD

CCTOOLS TO THE RESCUE!
• CCTools are user-level: no root access required!

• parrot: transparent user-level virtual filesystem

• allows us to access CVMFS

• work queue: framework for building large scale master-worker applications

• takes care of interactions with the batch system

• chirp: userland file server

• used for transferring input and output files

6

ANNA WOODARD

LOBSTER ANATOMY

• started by user
• tracks workers
• performs unit accounting
• assembles tasks on-the-fly

(allows for dynamic task sizes,
reconfigurable parameters,
isolating problematic units…)

master WQ worker task

lobster master
WQ worker

task

cache

wrapper

database parrot

cmsRun
unit

7

• user starts a factory to
submit workers

• runs tasks
• provides cache (shared

and reused by tasks)

• runs a wrapper which
starts Parrot if needed

• sets up working
environment

• executes cmsRun

ANNA WOODARD

LOBSTER ANATOMY

• started by user
• tracks workers
• performs unit accounting
• assembles tasks on-the-fly

(allows for dynamic task sizes,
reconfigurable parameters,
isolating problematic units…)

master WQ worker task

lobster master
WQ worker

task

cache

wrapper

database parrot

cmsRun
unit

8

• user starts a factory to
submit workers

• runs tasks
• provides cache (shared

and reused by tasks)

• runs a wrapper which
starts Parrot if needed

• sets up working
environment

• executes cmsRun

ANNA WOODARD

LOBSTER ANATOMY

• started by user
• tracks workers
• performs unit accounting
• assembles tasks on-the-fly

(allows for dynamic task sizes,
reconfigurable parameters,
isolating problematic units…)

master WQ worker task

lobster master
WQ worker

task

cache

wrapper

database parrot

cmsRun
unit

9

• user starts a factory to
submit workers

• runs tasks
• provides cache (shared

and reused by tasks)

• runs a wrapper which
starts Parrot if needed

• sets up working
environment

• executes cmsRun

WHAT’S NEW?

10

ANNA WOODARD

WHAT DO USERS KNOW?

UHM…

YOU ALMOST BROUGHT DOWN THE CLUSTER BY
COMPLETELY FILLING UP ALL OF THE LOCAL

DISKS!!!!!!!!! HOW MUCH {DISK, CPUS, MEMORY}
DOES EACH JOB NEED, ANYWAYS?

SYSADMIN
DO YOU KNOW ANYTHING ABOUT YOUR JOBS?

I KNOW THAT THESE ARE GEN JOBS, AND THOSE ARE RECO JOBS!

PHYSICIST WHAT KIND OF JOB THEY ARE RUNNING!
11

ANNA WOODARD

CATEGORIES
• Workflows can now be divided into categories

based on the resources they need— optimizes
packing!

• Per-category limits on concurrent jobs running
to control utilization of communication
bandwidth

• Runtime limits on each task category to
voluntarily terminate tasks: better resilience
against eviction!

12

ANNA WOODARD

RESOURCE MONITORING FEEDBACK LOOP

WQ isn’t sure how much disk
the task needs, so it starts out
by taking up the whole
worker. As tasks return, the
disk allocated settles to the
real requirement.

* From Ben Tovar’s Condor Week talk: http://tinyurl.com/jcajbnd

*

*

13

http://tinyurl.com/jcajbnd

ANNA WOODARD

WORKFLOW DEPENDENCIES
PROBLEM: Processing
runs have tails. Consider
a project with N
workflows, where WN
depends on WN-1. For
N * (tail length) time,
processing is running far
below capacity!

SOLUTION: Allow user to
specify workflow
dependencies. Submit a
task for the next workflow
as soon as input data
comes in!

14

ANNA WOODARD

ELASTICSEARCH! LOGSTASH! KIBANA!

Dynamic ELK Stack Monitoring for Lobster
Anna Yannakopoulos
Department of Physics, University of Notre Dame, IN 46556

Lobster is a program that enables large-scale distributed
computing on non-dedicated clusters for tasks that have
complicated and intricate requirements. Managing the diverse and
dynamic resources available in a non-dedicated cluster and
ensuring that each task has access to the files and dependencies
that it requires is a complex problem that invites a wide range of
failure modes. In order for the user to detect and act upon
unpredictable failure modes, Lobster must include a robust
monitoring system.

Currently, Lobster’s built-in monitoring produces a selection of
static plot images on an auto-generated web page. These plots are
hard-coded and cannot be modified without editing the Lobster
source code, meaning that it is difficult for the user to add or
modify plots. In the event that a previously-undiscovered failure
mode is encountered, the existing plots may not provide useful
insight into the cause of the problem, leaving the user to puzzle out
a solution by searching log files manually.

1. Scaling Data Intensive Physics Applications to 10k Cores on Non-Dedicated Clusters with
Lobster, IEEE Cluster 2015

2. Elasticsearch, Logstash, & Kibana, www.elastic.co
3. Elasticsearch-py, elasticsearch-py.readthedocs.io

Lobster

Comparison

References

Elasticsearch and Kibana were installed on a virtual machine and configured to run as
services using ports opened to the campus secure network. Using the official Elasticsearch
Python client module, an optional ELK monitoring interface was implemented within Lobster.

The ELK interface object populates Kibana with a set of dashboards, each containing a set of
default visualizations, from locally-stored templates and provides a link to the Kibana instance
containing them. New templates can be created from a user’s current Kibana dashboards
using the ELK interface, and the user’s current Kibana dashboards can be updated to include
additional templates at any time.

All Lobster log data is sent to the ELK interface object, which parses the log according to its
type, performs any additional calculations, and sends the complete log file to a run-specific
index in Elasticsearch. Additional data from sources other than Lobster, such as information
about the campus network bandwidth usage, is collected and sent to Elasticsearch via a
Logstash process or a Python daemon.

The dynamic nature of ELK monitoring, in comparison to the static
nature of current Lobster-controlled monitoring, offers new and
powerful tools for quickly discovering and solving problems as they
occur. ELK monitoring offers some clear benefits over the current
Lobster-provided monitoring:

● Lobster’s built-in monitoring is hard-coded and cannot be
modified without editing the Lobster source code and
restarting Lobster; ELK monitoring can be modified on-the-
fly using a graphical interface.

● Lobster’s built-in monitoring does not provide any method
of searching multiple log files other than standard
GNU/Linux command-line tools; ELK monitoring allows the
user to execute queries and aggregations on any part of the
complete log file and any data associated with it through a
graphical interface.

● Lobster’s built-in monitoring can only display data that
originated from Lobster, meaning that important external
data such as network bandwidth logs must be monitored
using a different system; ELK monitoring allows Lobster data
and external data to be monitored in a central location
using the same dashboards and visualizations.

● Lobster’s built-in monitoring scales in time cost per plot
with the amount of data that Lobster has generated and
thereby with the time elapsed since the run was started; ELK
monitoring does not have this problem and performs equally
well on runs of any length within reasonable limits.

ELK monitoring can improve the efficiency and speed of
Lobster troubleshooting and thereby leave more time
and resources for useful scientific computations.

ELK Stack
The ELK software stack is an open-source monitoring system
consisting of

● Elasticsearch, a distributed search and analytics engine
● Logstash, a data collection pipeline
● Kibana, an interactive visualization web application

Logstash and other data collection pipelines feed log files into
Elasticsearch, which acts as a database and a full-text search
engine queryable via a REST API. Kibana is a graphical interface for
creating, executing, and visualizing Elasticsearch queries that
allows the user to create dynamic graphs, charts, and tables
organized into dashboards.

Features
● New plots can be created and existing plots modified through Kibana’s graphical

interface as new failure modes are encountered and plots are automatically updated as
Elasticsearch receives new log data.

● Modular dashboards allow users to customize the monitoring system to suit their
needs; modules can be created from scratch, added from a selection of templates, or
removed at any time.

● User-defined time and content filters (written using the Apache Lucene query syntax)
can be applied to individual visualizations, entire dashboards, or all log data at once,
allowing specialized monitoring and isolation of interesting events.

● New sources of log data can be added to the ELK monitoring system using Logstash
during an ongoing Lobster run; this will in most cases seamlessly augment previously-
monitored log data.

Implementation

Elasticsearch

Additional
Logs

Above: An example of using Kibana’s filtering to troubleshoot
problems. The visualizations show tasks that failed on Notre Dame
CRC hosts and links to their full log files.

Below: The flow of log data between Lobster and the ELK stack.

ELK Interface
Additional

Logs

Lobster

Kibana

PythonLogstash

Monitoring
has been
implemented
in ELK…
Huge
improvement!

SUMMER DISC REU BY ANNA YANNAKOPOULOS.

SEND US YOUR UNDERGRADS!

15

ANNA WOODARD

CONCLUSION
• The capability of Lobster has been significantly increased— a few highlights have

been presented:

• Task categories

• Resource monitoring feedback loop

•Workflow dependencies

• Improved monitoring with ELK

• Lobster is helping to make progress on general CS research problems in the
context of real, complex, and demanding physics needs

• For more Lobster fun, see our poster: “Scaling Up a CMS Tier-3 Site with Campus
Resources and a 100 Gb/s Network Connection: What Could Go Wrong?”

16

BACKUP

17

ANNA WOODARD

LOBSTER ANATOMY
lobster
master

CMS
DBS

storage
data staged out
via
Chirp, SRM

external

software via
Parrot + CVMFS

input data via
Chirp or XrootD

status
updates

tasks

input
file
metadata

WQ
worker

CMS conditions
data via Frontier

18

