Contribution ID: 363

Type: Oral

CMS readiness for multi-core workload scheduling

Monday 10 October 2016 14:30 (15 minutes)

In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run-2 events requires parallelization of the code in order to reduce the memory-per-core footprint constraining serial-execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks however becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable the scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This contribution will present this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015 will be described, along with the current phase of deployment to Tier-2 sites during 2016. The process of performance monitoring and optimization in order to achieve efficient and flexible use of the resources will also be described.

Tertiary Keyword (Optional)

Secondary Keyword (Optional)

Computing models

Primary Keyword (Mandatory)

Distributed workload management

Author: PEREZ-CALERO YZQUIERDO, Antonio (Centro de Investigaciones Energ. Medioambientales y Tecn. - (ES)

Co-authors: MASON, David Alexander (Fermi National Accelerator Lab. (US)); KHAN, Farrukh Aftab (National Centre for Physics (PK)); LETTS, James (Univ. of California San Diego (US)); HERNANDEZ, Jose (CIEMAT); BAL-CAS, Justas (California Institute of Technology (US)); VERGUILOV, Vassil (Bulgarian Academy of Sciences (BG))

Presenter: PEREZ-CALERO YZQUIERDO, Antonio (Centro de Investigaciones Energ. Medioambientales y Tecn. - (ES)

Session Classification: Track 3: Distributed Computing

Track Classification: Track 3: Distributed Computing