GridPP DIRAC: Supporting non-LHC VOs on LHC centric resources

Daniela Bauer & Simon Fayer Imperial College London

CHEP 2016

Overview

- Introduction to GridPP and DIRAC
- User communities
- Experiment specific approaches within this framework
- What have we learnt?

The DIRAC Project

- The DIRAC framework for distributed computing was originally developed for LHCb
- In 2014 the DIRAC consortium was founded to make the software available to a wider audience
- There are currently at least 11 DIRAC instances in use worldwide
- Users can access these instances via scripts ("DIRAC tools") from their desktop, via a python API, using ganga[*] or via a Web interface
- Homepage: diracgrid.org

* https://ganga.web.cern.ch/ganga/ More on this topic in Rob Currie's talk on Oct 13th

The GridPP Project

- A collaboration of 19
 UK institutes
 providing Grid and
 Cloud based
 computing services to
 particle physics and
 other experiments
- Hosts 43k job slots and 33 PB of storage
- www.gridpp.ac.uk

GridPP DIRAC

Imperial College London

User base

- Small (< 100 users) VOs, usually with UK involvement
- These VOs have no dedicated computing support
- All of our users are familiar with the concept of a batch system
- Most (but not all) user are familiar with the concept of the grid
- Currently 16 supported VOs, 6 of them using GridPP DIRAC actively
- Three of these VOs were new to the grid/distributed computing

VOs using DIRAC

Running jobs by UserGroup

LSST (Large Synoptic Survey Telescope)

- Currently being build in Chile: http://www.lsst.org/
- Current UK contribution: Shape classification of galaxies on data taken by a predecessor (Dark Energy Survey)
- 100 million galaxies, data divided into 30000 files.
- Experiment specific software.
- Classification of a galaxy is an independent measurement, uses 10-20 s of CPU
- All data for a specific galaxy is contained in the same file
- This looks a lot like particle physics.
- No previous experience in grid computing.
- Settled on ganga and DIRAC file catalogue for job submission and data access.
- 40 days FTE work required to setup and successfully complete workflow.

comet.j-parc.jp

- COMET: Coherent μ to e transition looking for non-SM decays μ + Al \rightarrow e + Al based in Japan
 - http://comet.kek.jp/Introduction.html
 - GEANT4 based detector simulation
 - Uses experiment specific Python scripts to interact with DIRAC API
 - Extensive use of the DIRAC file catalogue

LZ (Lux Zeplin)

- Dark matter experiment based in the USA:
 - http://lz.lbl.gov/
 - GEANT4 based detector simulations
 - Output root files stored on Imperial SE used DIRAC file catalogue
 - So far: Used experiment specific Python scripts with DIRAC API
 - Now: Custom job submission system, includes database to keep track of production data

LZ user interface

Alexander Richards, Imperial College London

Allows selection by available software/tags → reduces user error 4 weeks FTE to implement

The LZ production system

Alexander Richards, Imperial College London

gridpp

- Umbrella VO for UK researchers that do not belong to any other VO
 - e.g. GHOST: Geant Human Oncology Simulation Tool:
 - http://www.comprt.org/research/ghost-project
 - Using DIRAC tools directly, running Geant4 based simulation
 - Systematic infrastructure testing (similar to the UK nagios tests, including network tests)
 - Using DIRAC API, extensive file transfers

pheno

- Phenomenology group based at Durham/UK:
 - See https://inspirehep.net/record/1382345 for current work
 - Uses DIRAC via ganga to run home grown Monte-Carlo.

snoplus.snolab.ca

- Neutrino experiment based in Canada: https://www.snolab.ca/science/experiments/snoplus
 - Established experiment, converting from WMS based submission
 - Uses ganga as a frontend
 - Monte Carlo production (GEANT4 + experiment software)
 - Limited user analysis
 - Uses LFC
 - Introduced the first non-British sites in GridPP dirac
 - Some of these use HTCondor

Observations from User Feedback

- DIRAC was conceived as a single VO framework and not all features are truly multi-VO (e.g. listing available sites)
 - Solving this is primarily a funding issue
- Slow implementation of feature requests
 - Requests are generally both sensible and viable:
 e.g. support for HTCondorCEs
 - Manpower issue
- Error messages tend to be unhelpful
 - Not helped by the fact that the underlying grid tools aren't necessarily reporting helpful errors either
 - Lost cause ?

Observations/Conclusions

- To get from a fairly straight forward single test job submission to a production setup in most cases requires several weeks worth of (outside VO) expert effort or a computing affine person in a VO
 - This is reasonable. It's a complicated system doing non-trivial work and we should treat it as such.
 - Focus on making the expert effort available/accessible.
 - Expectation management.
 - Accept that solutions for individual VOs might not be portable.
 - But: Try and steer VOs early to one or two proven approaches, even if it's badly documented.

Conclusion

We've been successfully running a multi-VO DIRAC server in the UK for the 18 months.

This has proven useful to allow small VOs access to LHC-centric resources.

There is room for improvement.

Thank you for listening :-)

Questions?

The GridPP DIRAC server

Usage by site

Running jobs by Site

