Software and Experience with Managing Workflows for the Computing Operation of the CMS Experiment

CHEP, October 10, 2016
Jean-Roch Vlimant for the CMS Collaboration
Production Overview

- Analyzing CMS data requires a large volume of Monte-Carlo
 - Billions of events in 10s of thousands of datasets
 - Need a system that scales
- Production is done in successive steps towards the production of the analysis datasets
 - Arrangement dictated by software requirements, flexibility, resource utilization, ...
 - Working towards all-in-one workflow
 - Requires a flexible system
- Production is performed over the LHC grid
 - 1 Tiern 0 (CERN), 6 Tier 1, ~60 Tier 2, hundreds of T3
 - Heterogeneous clouds summing up 200k cores available
 - Automation is the key to using diverse resource
- Sites can develop features or become available very fast
 - Also opportunistic resource
 - Need a dynamic system
Outline

• Handling production
 ➢ Quick Overview
 ➢ Data Placement
 ➢ Work Distribution
 ➢ Work Routing
 ➢ Monitoring

• Summary & Outlook
Production Overview

Generator Group
Alignment & Calibration
Core Software
Computing Resource

Monte Carlo Management

Workflow Management

Job Broker

Work Assignment

This presentation
Handling Production
Production Overview

- Generator Group
- Alignment & Calibration
- Core Software
- Computing Resource

Monte Carlo Management

Workflow Management

Job Broker

T0
T1s
T2s
Monte-Carlo Management (McM)
- CMS Software configuration and ingredients for production steps aggregated in campaigns
- Subsequent steps of production materialize in chains of campaigns
- Flow implement campaign modifiers
- Allow for complex chaining
- Flexibility for defining any specific request

✔ Samples requests added by generator contact person
✔ Chaining operated by production managers
✔ Automation where relevant
✔ Validation histogram provided
✔ Performance run-test executed

➔ Injection of consolidated workflow to production system
➔ Ability to inject a workflow with trees of processing steps
Workflow Management

- Receive assembled configuration
- Driven by work assignment agent

- Prepare the **full tree of processing** towards the production of the final output
 - Actual data processing and production
 - Additional steps: merging small output files for transfer efficiency, cleaning of outputs, collecting of running log files, ...

- **Split jobs** according to workload specifications and data content

- Submit jobs to broker (HTCondor)
- Resubmit certain types of failures
- Keep the books of production data location for subsequent processing

- **Inject the produced data** with parentage into book keeping system

- System composed **central request manager** and **multiple agents** supporting high load
 - 5k workflows
 - 200k jobs pending
 - 150k jobs running
- Constant improvement for scalability
Job Brokering

- **Shared resource** between analyzer and central production in a global pool
 - T0 production on a specific pool
- Use of HTCondor + glidein mechanism
 - Wrapper job: pilot running on site
 - Receive and execute trusted jobs
- Double stage of matchmaking
 - Jobs to resource (start pilots)
 - Jobs to pilots (claim pilots)
- Migrated for a large fraction to **multi-core partitionable pilots**
 - Allows multi-thread application
 - Moving most workflows to 4+ threads
- High Throughput computing solution

- ~30 schedds for production and analysis with redundancy
 - Record **200k concurrent jobs**
 - Steady >**150k job**
 - Constantly working towards scaling up
Driving Production
Generator Group
Alignment & Calibration
Core Software
Computing Resource

Monte Carlo Management

Workflow Management

Job Broker

Work Assignment

T0, T1s, T2s
Production State Transition

- **Considered**: received from submission tool
- **Staging**: primary of secondary input is being placed
- **Staged**: all inputs are in place
- **Away**: submitted to htcondor
- **Close**: is fully ready for delivery
- **Done**: delivered

→ Most workflow go through **untouched automatically**

- **Trouble**: the workflow had to be removed and replaced
- **Forget**: the workflow is too much trouble and is just removed
- **Assistance**: goes

→ That's where trouble begins (see in later slide)
Input Data Placement

- Heterogeneous size/event in primary input and time/event
 - Usually anti-correlated: constant size/time.
 - **Automated transfers** for 1-3 copies over the sites

- Data might be held by someone else
 - **Re-use existing copies** if possible

- Disk space is handled by DDM/Dynamo (see Yutaro's talk)
 - **80% of the allowed quota** is used as operation quota for placing input, leaving enough room for growing output datasets

- Not all workflows can go run everywhere
 - **Pre-matching job/resource** to decide destination according to pledge CPU resource and within quota

- The more sites the better for load sharing
 - Input are **split in 4T chunk** and distributed

- Simulation of LHC event overlay requires event mixing
 - **Secondary inputs are positioned automatically** according to adopted strategy

- Transfers are subject to storage and network issues
 - Stuck-ness of transfers are monitored, solved or by-passed with starting with less than optimal copies

Monitoring of used space, quota and output buffer
Work Assignment

➢ Not all workflows can go run everywhere
 ➔ Pre-matching job/resource to decide

➢ Simulation of LHC event overlay requires event mixing
 ➔ Standard mixing with high-read restricts the list of sites
 ➔ Pre-mixing with lower-read read over the network (xrootd)

➢ The more sites the better for load sharing
 ➔ Use all sites that hold part of the input are candidates

➢ Input dataset can be too large, and still need to be processed in many places
 ➔ Setup reading the primary over xrootd to sites holding full copies and their WAN neighbors

➢ Diversity of workflow and complexity of submission
 ➔ Some job splitting tweaks are performed upon rules

➢ Some resource might get available temporarily
 ➔ Flexibility to add specific assignment rules

➢ DDM/Dynamo is managing the disk space for production
 ➔ All input and outputs are locked from deletion

Not much difference between tiers within a cloud model
Where Trouble Begins

- **Assistance**: some level of scrutiny from operator is required
- **onhold**: decision is taken to hold on until further notice (issue to be understood)
- **recovery**: inline for automatic recovery of missing statistics
- **biglumi**: big lumi-section size (production artifact in simulation)
- **duplicates**: a lumi-section are appearing in multiple files
- **File mismatch**: a file mismatch appeared in the book keeping system
- **manual**: requires visual inspection from operator

- Partly automated
- Issues **efficiently reported**
- Error collecting and analysis **towards automation** of decision

Unified® state sub-diagram
While a Workflow is “Away” ...

- Site might come out of production status because of schedule intervention, emergency shutdown, intermittent failures, ... (see sites monitoring)
- Workload backlog might develop on local site queue
 - Mechanism to overflow to neighboring site
 - Quicken delivery with reliable remote read
 - Reposition blocks of data accordingly
 - Can be used to divert work to resource becoming available

- Jobs requirement are just estimation from limited test-run
 - Job memory requirement is edited when possible to values observed in running over the grid
 - Job runtime requirement can be edited
 - Better partitioning of resource into job slots

- Shorten workflow processing above agreed completion fraction and running time
 - Working towards much more flexibility, using a more granular data-driven processing strategy
Operation Monitoring

- Overview of work at each level
 - Provide links to all services
- Logging **heart beats**
 - Dashboard of **critical items**
 - Single **workflow history**

- Expose information relevant to other services in json
- Production disk space at a glance
- **Notification** to requesters
 - Log redundancy
- Display all relevant errors
 - Guidance to operators
 - Working towards human-assisted AI operation
Outlooks

- Towards even more dynamic job/data placements for load balancing
- Incorporate more opportunistic resources
- Towards network-aware workload balancing
- More automation in dealing with errors, over the sites, over jobs, ...
- Dreaming of AI-assisted computing operation
SUMMARY

- Large scale production and reprocessing for RunII
- Automated operation helps improving throughput
- Complex work assignment helps reaching more resource
- Dynamic work reallocation helps reducing backlog
- Constantly working on improvements
Backup Slides
Sample Monitoring

- **Production Monitoring Platform** (pMp)
- Display current statuses of campaigns
- Track **evolution of single requests** and aggregates several ways
- Help guide the user waiting for samples
- Allows for **production planning**

ICHEP MC Generation 12.5B
Steady 1.5B / month

ICHEP Analysis MC 6B
Peaks at 2B / month
Production Monitoring

- Amount of work left for production at a glance
- Monitors overall resource utilization
- Identifies tails in production
- Aggregate information from several services
 - Average 2000 datasets released per week
 - Peak 5000 analysis datasets per week
Job Monitoring

- Aggregate and present information from HTCondor and Glideinwms
 - Number of **CPU and jobs per task**, per workload, per site, ...
 - **Status of sites** with respect to HTCondor
 - Show the **load on the schedd**
 - Job production/analysis share at sites
- **Feedback loop** on how sites, tasks, and jobs are performing
 - Working on using more of the feedback loop for **processing optimization**
Storage Control

- Available tape space monitored
 - Fair-share distribution to long term storage
- Disk space managed with virtual quota for production and analysis
 - Automatic transfer and deletion
- Developing production strategy with a smaller disk footprint
Resource Monitoring

- Steady 100k jobs running for CMS (production and analysis)
- Large contributions from T2
- Large fraction of multi-core pilots
- Spot trend in resource utilization
Sites Availability

- Aggregate live information about sites
 - Site Availability Monitor (SAM) compute and storage services
 - Hammer Cloud (HC) ability to run jobs
 - Data Transfer (PhEDEx) transfer links
- Determine the site ready-ness
 - Working towards more dynamic and specific site status evaluation