

# On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers

CHEP 2016 - San Francisco, United States of America

Günther Erli, Frank Fischer, Georg Fleig, Manuel Giffels, <u>Thomas Hauth</u>, Günter Quast, Matthias Schnepf Institute of Experimental Nuclear Physics (IEKP), KIT, Germany

Jörg Heese (joerg.heese@1und1.de), Katja Leppert, Javier Arnáez de Pedro, Rainer Sträter 1&1 Internet SE. Montabaur. Germany



## **Motivation**



Modern high energy physics (HEP) research relies heavily on large computing resources:

Simulation CPU intensive, moderate I/O

Reconstruction I/O and CPU intensive

Analysis I/O intensive, moderate CPU usage

Other Compute-Intense Jobs like Limit Calculation, Theory Calculations mostly high CPU, low I/O

 Continuously growing demand for computing resources requires rethinking of traditional HEP-only clusters

#### New ways to acquire computing capacity

HPC Systems

High Performance Computing (HPC) resources via bare-metal or virtualization

Local Opportunistic Resources
 via bare metal, lightweight Docker or virtualization abstraction

Commercial Clouds

Pay commercial providers to handle peak loads or dedicated computation campaigns

## From HPC Cluster to HEP Worker Node





#### The Infrastructure-as-a-Service (laaS) model

- Infrastructure (e.g. machines, network) is virtualized
- Decouples complexities of hardware maintenance and specific software setup
- The life cycle of this virtual infrastructure is managed by a Cloud system:
  - Virtual machine images are managed
  - The user can upload and start custom virtual machines
- HEP software is loaded on-demand via the CVMFS file system
- Input and output data is loaded via fast WAN links from HEP-specific storage sites with SRM or XRootD

# **Our Technology Choices**







# **Batch Server: HTCondor [1]**

- Excels at handling dynamic resources
- Can easily integrate worker nodes beyond network zone boundaries
- ClassAd system and custom job routing allows adaption to specific use cases
- Resilient, scales to more than 100k jobs, open source



## Cloud Scheduler: ROCED [2]

- Support for multiple Cloud APIs (OpenStack, Amazon EC2 and other commercial providers) and batch systems
- Easily extendable thanks to modular design
- Parses HTCondor's ClassAds and boots VMs on cloud sites

For System Abstraction: OpenStack and Docker

# **Job Submission and Workflow Management**



Goal: allow the Institute's user groups seamless and hassle-free access to both the Institute's local and the remote Cloud resources.



- Users can submit their jobs using the condor\_submit command
- The recommended workflow is to use the job submission tool grid\_control [3]
- By adding specific HTCondor ClassAds when submitting the job, users can either:
  - submit only to local worker-nodes (with direct fileserver access)
  - submit only to remote Cloud worker-nodes (with file access via Grid tools)
  - submit to both at the same time

# **HPC System: shared hybrid Cluster**



- Located at Freiburg University 150km south of Karlsruhe
- Shared by 3 diverse scientific user groups:
   Elementary Particle Physics, Neuroscience, Microsystem Engineering
- Full system recently installed with 16,000 Broadwell CPU cores
- OpenStack used as virtualization manager
- $lue{}$  VM scheduling integrated into existing batch system to honor other user groups on cluster  $lue{}$  Hybrid HPC Cluster [4]
- Special ROCED-Adapter was developed to provision VMs via the HPC Cluster's batch system
- Important feature
   User jobs are automatically executed on this cluster, if local file system access was not explicitly requested by the users

# **HPC System: Results**





- Pre-production cluster (1000 cores) used for 6 month
- Some adaptations were required: more OpenStack management nodes, configuration of HTCondor collector (file handle limit and friends)
- Production system has been scaled up to 11000 virtualized cores
- In total, more than 5 million CPU hours of user jobs so far processed

# **Local Opportunistic: HTCondor+Docker**



- New feature in HTCondor: run jobs in a Docker container, we call it HTConDocker
- Users submit job via HTCondor
- HTCondor runs on bare-metal system and starts a Docker container on demand
- More lightweight (esp. memory) compared to full virtualization
- Easier administration than OpenStack: only HTCondor and Docker
- Users may select a Docker container best suited for their needs



#### Positive Experience so far

- Used successfully on our Institute's powerful Desktops (4 core, 16 GB RAM) to provide an additional 150 opportunistic job slots
- More than 10k CPU hours of computing over one weekend
- Satisfies the requirements of various user groups: AMS, Belle II, CMS

# **Commercial Cloud: 1&1 Internet**



 1&1 Internet SE is one of Europe's leading internet service provider with a strong global presence



- Jointly 1&1 and the KIT team started a pilot project to evaluate the Cloud Server product for HEP jobs
- The Cloud Server product offers dynamic provisioning of VMs and accurate billing depending on the machines uptime and configuration
- With the goal to make the results available to the scientific community, we adapted the 1&1 standard product to HEP use cases

#### Scope:

- ROCED-Adapter for Cloud Server API [5] was developed
- Possibility to upload and deploy a custom VM-Image with Scientic Linux 6.7 (or other, if needed) and CVMFS and HTCondor support
- Configured dedicated CVMFS-Squid VM in 1&1 data center which gets automatically started by ROCED as soon as one worker VM is booted
- Possibility to run workloads across 1&1's data centers

## **1&1 Internet Results**





#### **Resulting preconditions:**

- We took advantage of the fact that the load distribution is lower during night time (due to typical customer profile)
- Only jobs with a run-time smaller than 12h were scheduled to 1&1 data centers

#### Results:

- Per night up to 800 job slots were provisioned, if enough user jobs had been queued
- Jobs of users from multiple experiments run reliably on the virtual WN
- API based scheduling without manual intervention is possible

## Conclusion



Our institute runs a flexible computing system which is able to leverage resources from multiple sources:

Shared HPC System
Local Opportunistic Resources
1&1 Internet Cloud Server

- The complexity and provisioning of these (remote) resources is hidden from the user with:
   HTCondor for job submission and management
   ROCED for provisioning of remote resources
- This dynamic model gradually replaces our Institute's private HEP-only cluster in the basement: both in ease of use and capacity



## References I



- "HTCondor website." http://research.cs.wisc.edu/htcondor (28.9.2016).
- "ROCED website." https://github.com/roced-scheduler/ROCED (28.9.2016).
- "Grid-control website." https://ekptrac.physik.uni-karlsruhe.de/trac/grid-control (13.4.2015).
- "ACAT 2016: Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system."
  - https://indico.cern.ch/event/397113/contributions/1837774/(28.9.2016).
- "1&1 Cloud Server SDK Python." https://github.com/1and1/oneandone-cloudserver-sdk-python (29.9.2016).



## High [Performance and Throughput] Computing



#### **High Performance Computing (HPC)**

focuses on the efficient execution of compute intensive, tightly-coupled tasks.\*

#### **High Throughput Computing (HTC)**

focuses on the efficient execution of a large number of loosely-coupled tasks.\*

#### Nearly all High Energy Physics workloads belong to the HTC category

| Property        | typical HPC jobs           | typical HEP jobs                  |
|-----------------|----------------------------|-----------------------------------|
| Interdependence | interconnect between nodes | each node independent             |
| Runtime         | runs up to weeks           | individual job runtime $\sim$ 24h |

#### **HEP jobs on HPC Clusters**

- HEP batch jobs can be placed anywhere (no fast interconnect between jobs)
- Backfill of HEP jobs can be run also in smaller quantities to fully load a partially occupied cluster
  - \* according to the European Grid Infrastructure (EGI) https://wiki.egi.eu/wiki/Glossary\_V1

# **Topology of Local and Remote Sites**





#### Data-transfer from and to Remote Site



- 400 concurrent VMs running at remote site to simulate typical work load
- Stage-In: Jobs copy files with the size 250 MB to 1 GB from the GridKa Tier-1 storage element
- Stage-Out: Synthetic jobs create random 1 GB files and transfer them to the GridKa Tier-1 storage element





- Benchmarks the full chain: Hardware virtualization, Firewalls, Routing and storage pools
- Successful outcome: The available bandwidth (10 GBit) can be saturated