USING DAGMAN IN CRAB3 TO IMPROVE TASK SPLITTING FOR CMS USERS

MATTHIAS WOLF, MARCO MASCHERONI, STEFANO BELFORTE, ERIC VAANDERING, JOSE HERNANDEZ, ANNA WOODARD, BRIAN BOCKELMAN
WHAT IS CRAB3?

- Hundreds of physicists regularly submit analysis jobs to the Grid using a tool called CRAB3
- Architecture: lightweight user client and CRAB3 server which accepts user requests ("tasks")
- CRAB3 manages ~3 million jobs per week
CONVENTIONAL USER WORKFLOW
SPECIFICATION OF A CRAB3 ANALYSIS TASK

• User responsible for specifying:
 • Dataset (group of files) to process
 • Code to run
 • “Splitting parameters”, i.e., how many units each job should process
 • Units = files, lumi sections, or events
CRAB3 SERVER’S HANDLING OF THE TASK

Server initializes task and:

• Pulls dataset metadata in from the CMS dataset bookkeeping catalog (DBS)
• Splits input dataset into jobs using metadata + splitting parameters
• Creates a single-depth DAG:
 • DAG=Directed Acyclic Graph, keeps track of dependencies between jobs
 • Single depth=no interdependency between jobs
• DAG submitted to scheduler for processing
SPLITTING IS HARD FOR USERS

WHY DID YOU SUBMIT 10,000 FIVE MINUTE JOBS?!?

UHM....

PHYSICIST

HOW LONG DOES YOUR CODE TAKE TO RUN PER EVENT? HOW BIG IS YOUR DATASET?

EHM....

CRAB3 OPERATOR

ANNA WOODARD 6
SPLITTING IS HARD FOR USERS...

• Difficult for users to provide optimal task splitting parameters
 • Code runtime may differ for each:
 • Code iteration
 • Dataset (different event complexity)
• Tendency for user to choose parameters which create many short jobs
 • Hard limit for jobs per task is quite high (10,000 jobs)
 • Users can get away with memory leaks with short jobs

...AND THEY DO IT POORLY!
TOO MANY SHORT JOBS

• Almost 50% of the jobs have a runtime of ~40 minutes!
• Large number of small jobs causes excessive load on the schedulers and other central components.
CAN CRAB3 DO A BETTER JOB THAN THE USERS?

THERE’S NO ADVANCED PHYSICS IN SPLITTING.
DRY-RUN FOR BETTER SPLITTING
Improving the Splitting Experience: Dry-Run

Run a small test job locally to provide timing estimate and recommend splitting parameters!
AUTOMATIC SPLITTING
USING DAGMAN TO DO THE SPLITTING AUTOMATICALLY

• TaskWorker sends a single node DAG ("probe" for timing)
• The probe’s post processing step then:
 • Performs splitting
 • Creates a SubDAG with processing jobs
BENEFITS

For users—removes guesswork: only need to configure desired runtime

For CRAB3 operations—allows enforcement of a minimum job runtime
TAIL-SPLITTING FOR FASTER TASK COMPLETION
CONSTRANING TASK RUNTIME

Not all machines/sites equal: some jobs still take more time than expected.

- Since CMSSW_7_2_0: Can configure runtime limitations

New possibility:

- Use this to cut off tails in the runtime distribution!
- Resplit unfinished work to create subDAGs with small jobs which run in parallel
- Faster task completion!
TAIL-SPLITTING FOR FASTER TASK COMPLETION

PROCESSING SUBDAG

PRE | JOB | POST

COMPLETION SUBDAG

PRE | JOB | POST

PROBE DAG

PRE | JOB | POST

...
TAIL-SPLITTING FOR FASTER TASK COMPLETION

CONVERT TAIL INTO SMALLER JOBS

TWENTY HOURS TO COMPLETE!
CHALLENGES

• SubDAGs for the tail-splitting jobs increase resource consumption

CONCLUSIONS

• We have implemented automatic task splitting
• Will be included in the October CRAB3 release
• Tail-splitting feature is currently disabled, will be enabled pending more tweaks to address resource consumption