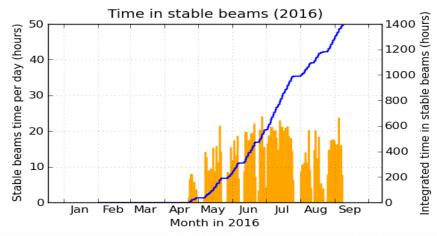
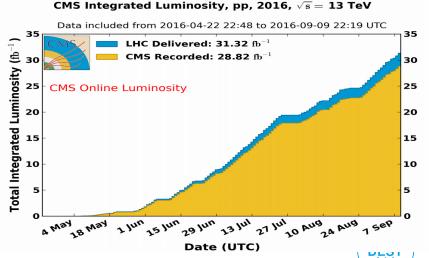
Managing the CMS Data and Monte Carlo Processing during LHC Run 2

CHEP 2016

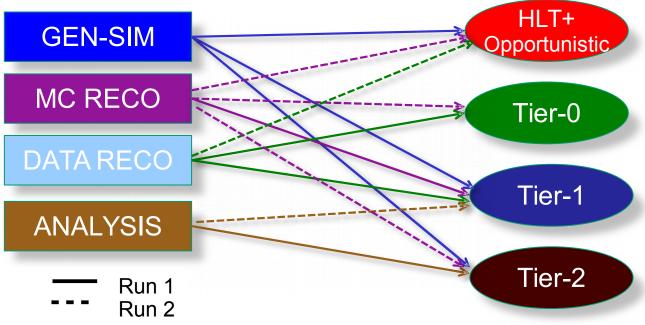
Christoph Wissing (DESY) for the CMS Collaboration October 2016



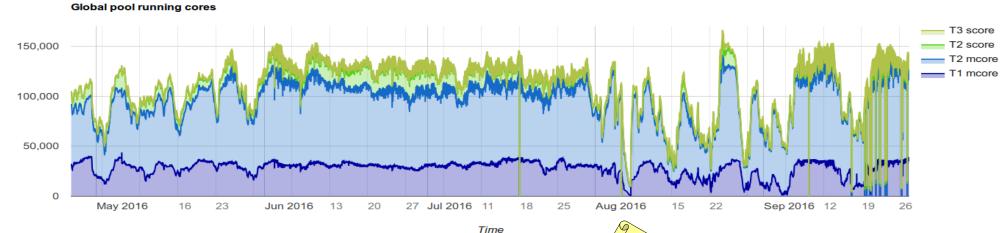


LHC & CMS Performance

CMS


- Excellent performance of the LHC
 - Expected uptime reached in September
- Very demanding data rate taken by CMS detector
 - Data logging rate often beyond the target of 1kHz
- Increased need for corresponding Monte Carlo sets
- Computing becomes resource constrained
- Requires flexible and efficient use of all resources

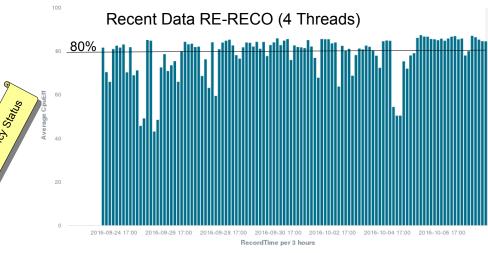
Decoupling of Workflows and Resource Types

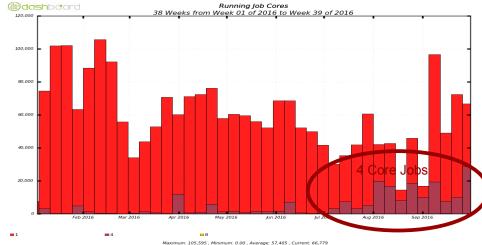


- Rather tight coupling of workflow types to resources in Run1
- Big gain in flexibility for Run 2
 - Almost each workflow can run anywhere
 - All CPU joined to one Global HTCondor pool + dedicated Tier-0 pool
 - (Almost) all Tier-1 & Tier-2 disk managed via Dynamic Data Management (DDM)

Global Pool

- Stably utilization of ~130.000 cores
- Multi-core pilots sent to ~90% of the resources
 - Campaign to move Tier-2 sites to multi-core pilots in Spring 2016
 - Send exclusively multi-core pilots where possible
 - "Dynamic partitioning":
 Matching of single vs. multi-threaded application happens inside the pilot


and sea sea for multi-core workload scheduling of the CMS Global Pool for NWMS to new limits


Christoph Wissing |

CMSSW became multi-threaded

CMS

- Advantages
 - Memory is shared between threads
 - Need less jobs for the same amount of events
- Efficiency of multi-core applications
 - Big fraction of code needs to be thread-safe [Amdahl's law]
 - Achieved good CPU efficiency in recent software releases
- Usage in Production
 - PromptRECO (Tier-0) since 2015
 - Re-reco since end of 2015
 - Digi-reco since Summer 2016

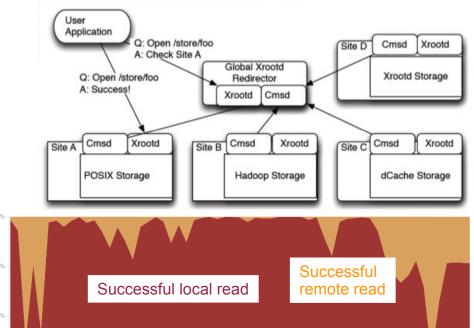
Dynamic Data Management (DDM)

- DDM manages today about 54 PB of disk space
 - All Grid sites (Tier-0, Tier-1s and Tier2s) contribute to the DDM pool
- DDM controls the Phedex groups AnalysisOps and DataOps
- DDM creates new subscriptions or removes subscriptions based on
 - Data popularity
 - Access of data is recorded
 - Create more replicas for 'popular' datasets, lower the replication for less popular datasets
 - Disk usage level on a given site
 - > Keep sites filled at a 'safe' level and always use available disk space
 - A set of DDM policy rules (examples, actual config my be different!)
 - Keep at least 2 copies of 2016 AOD data
 - > Keep at least 3 copies of MINIAODSIM from main 2016 MC production campaign
 - Delete RECO datasets from disk after 3 months of lifetime

System for the distribu

is conduing system

Remote Data Access via AAA Storage Federation

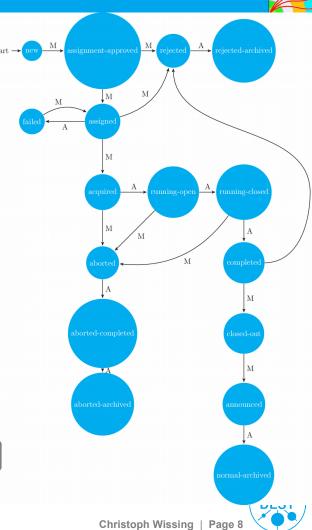

•D. Lange - CMS Full Simulation Status

ok/failed

Fraction of local/remote read

Failed

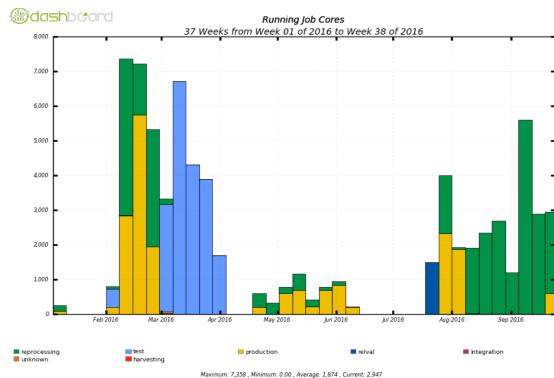
- Efficient remote data access important for flexibility
- CMS application I/O got improved for remote reads
- Present technology choice
 - Xrootd based storage federation
 - Sites "publish" storage inventory to regional re-director
 - Hierarchy of re-directors
 - Two redundant regional re-directors in Europe and US
 - One redundant global re-director at CERN
- Central production uses AAA routinely
 - RE-RECO of data
 - Classical Pileup-Mixing for MC DIGI-RECO
 - I/O intense read for pileup local
 - GEN-SIM of "primary physics process" via AAA
 - MC DIGI-RECO with premixed pileup



Workflow Management

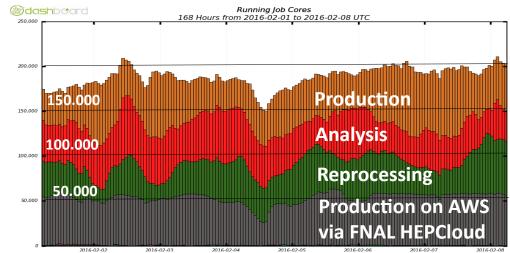
CMS

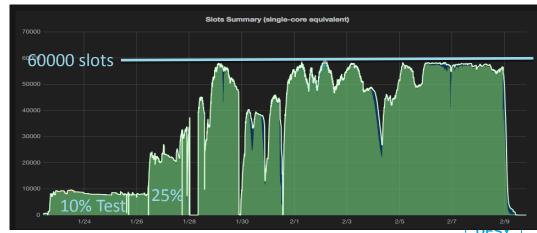
- One central Request Manager
- Unified Tool
 - Handling of input data staging and placement
 - Assignment of request to resources
 - Largely automated based on configurations for different campaigns
 - Recover failed parts of a request
 - Close-out and announce finished requests
- WMAgent(s)
 - Several instances
 - Job splitting and submission to Global Pool
 - Job tracking


J.-R. Vlimant - Software and Experience with Managing Workflows for the Computing Operation of the CMS Experiment

High Level Trigger (HLT) Farm as Processing Resource

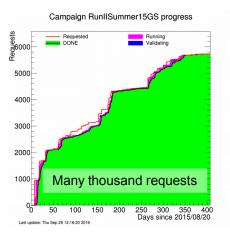
- HLT is a significant resource: ~15k cores
- Routinely used during longer breaks
 - HTL 'converted' to Openstack cloud
 - VMs join the Global HTCondor Pool
- Inter-fill mode
 - "Old" mode:
 - > Start cloud and launch 2h jobs
 - > Kill, if beam comes back
 - New mode:
 - > Suitable for present LHC performance
 - > Suspend running VM to disk, during beam
 - Resume VMs when luminosity gets lower
 - Successfully commissioned

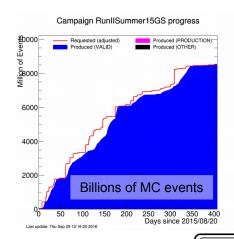

M. Dobson - Dynamic resource provisioning of the CMS online cluster using a cloud overlay


Adding new Types of Resources: Clouds

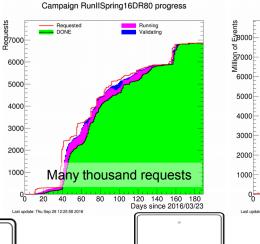
- Dynamic extension of FNAL
 - Send jobs transparently to AWS cloud
- Reached 50k cores in AWS
- Quite some lessons learned
 - Pricing on Spot market
 - Costs for data handling
 - Suitable workflows
- Contribution to official MC production
 - ~0.5 billion events
- Important experience for other Cloud projects
 - Cloud procurement by CERN
 - Academic & commercial clouds being evaluated in various countries

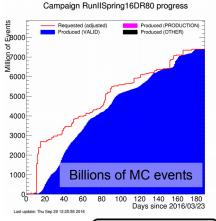
M. Girone - Experience in using commercial clouds in CMS

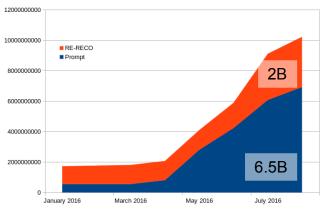


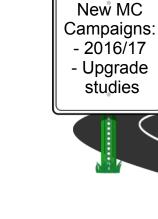


Production and Processing in 2016








MC DIGI-RECO

Data: Prompt + RE-RECO

studies

Christoph Wissing | Page 11

Summary

- The LHC is performing even beyond planned performance
- Data taking, data processing and corresponding MC production became resource constrained
- > A number of recent developments enable CMS to cope with the situation
 - Pooling of resources
 - Agile utilization
 - Tools for automation
 - Provisioning of resources beyond classical Grid sites
- Need to pay close attention to computing resource availability vs experiment plans

"That's the kind of problems you want to have" (J. Butler - CMS Spokesperson)

Related CHEP Contributions

- A. Perez-Calero et al. CMS readiness for multi-core workload scheduling
- A. Perez-Calero et al. Stability and scalability of the CMS Global Pool: Pushing HTCondor and glideinWMS to new limits
- > C. Jones CMS Event Processing Multi-core Efficiency Status
- Y. liyama Dynamo The dynamic data management system for the distributed CMS computing system
- > D. Lange CMS Full Simulation Status
- J.-R. Vlimant Software and Experience with Managing Workflows for the Computing Operation of the CMS Experiment
- > HLT Poster?
- M. Girone Experience in using commercial clouds in CMS

