
VAC is a runtime framework that gives a Plain Vanilla Worker Node the ability to run multifarious virtual machine payloads on
behalf of client experiments. We have tested VAC on a section of our production cluster for some months to probe various aspects
of its performance and reliability.

Compatibility problems have bedevilled traditional grid cluster solutions to large scale computing. The challenge of orchestrating
the deployment, operation and maintenance of a compatible technological baseline has been formidable due to a multitude of
seemingly simple interfacing glitches and consequential failures. Virtual payloads isolate the jobs from the underlying technology.
This reduces the requirements on the worker node system. It is expected that virtual or containerised payloads would reduce the
scope for version mismatches and other interface disconnects.

One of VAC's design goals is to avoid specific clustering middle ware. VAC can be hosted on a Plain Vanilla Worker Node (PVWN)
that is built to a site's standard but which may omit or disable cluster specific modules, and thus only needs to provide a basic
hardware and operating system that is networked and which supports the creation of Virtual Machines.

VAC Principles of Operations - The basic premise is to take
a PVWN or similar, install and configure VAC on it, and set it
in action to collect and run virtual machine payloads. VAC is
configured to query various suppliers of VM payloads
according to some “fair share” allowance such that
experiment usage coarsely follows a pre-set ratio.

When it finds an experiment with a payload ready, VAC
downloads it and starts it up. The payload executes its own
work, while VAC controls the VM life cycle, applying various
constraints such as memory or wall clock time and providing
runtime information for the guidance of the payload. Once
the payload ends, VAC is free to download another image
(or reuse an existing one) and thus the cycle continues. No
central coordination exists. VAC hosts can be set up
opportunistically wherever and whenever computation
resources become available.

It is usual, but not necessary, to use sets of co-located VAC
nodes in a “cluster”, but no head node is necessary. The
machines use peer-to-peer communications to status each
other and coordinate the workload ratios. Presently, VAC is
constrained to run single core jobs, but multicore jobs are
planned, and other VOs have plans to include VAC in their
pilot frameworks.

The test took place over four months on a section of our
production cluster and consisted of 60 nodes providing
a total of 530 jobs slots. No scalability issues were
encountered and VAC achieved near full slot occupancy
due to a consistent supply of payloads.

Jobs were processed from three VOs; ATLAS, LHCb
and GridPP, which is an umbrella VO that various
smaller experiments use. The vast majority of the work
presently comes from ATLAS.

VAC does not completely eliminate the need for all
middle-ware on the node; for example, some peripheral
middle-ware software was needed such as APEL
accounting and http file caching for CVMFS.

Nonetheless, we found that VAC largely meets its
design goals. The total payload traffic from the three
experiments who participated was found to be
consistently high, and the VAC system itself is highly
reliable and straight forward to configure and use. We
can recommend VAC to sites that require a easy
migration to virtual payloads that involves minimal
ongoing maintenance.

06/29 07/09 07/19 07/29 08/08 08/18 08/28 09/07 09/17 09/27 10/07
0

100

200

300

400

500

600

VAC Jobs

(daily average; f ull occupancy = 530)

Total

Atlas

LHCb

GridPP

Date (MM/DD)

A
ct

iv
e

 s
lo

ts

Actual Usage

Atlas

LHCb

GridPP

TESTING THE VAC
VM PAYLOAD
FRAMEWORK AT
LIVERPOOL

	PowerPoint Presentation

