
Connecting restricted, high-availability, or low-latency
resources to a seamless Global Pool for CMS

Kenyi Hurtado Anampa10, Justas Balcas3, Brian Bockelman9, Jadir Marra Da Silva7, Dirk Hufnagel5, Bo Jayatilaka5, Farrukh Aftab Khan6, Krista
Larson5, James Letts8, Marco Mascheroni5, David Mason5, Ajit Kumar Mohapatra11, Stefan Piperov1, Anthony Tiradani5, Antonio Perez-Calero

Yzquierdo4, Vassil Verguilov2

1 Brown University (US)
2 Bulgarian Academy of Sciences (BG)

3 Caltech (US)
4 CIEMAT (ES)

5 Fermilab (US)
6 National Centre for Physics (PK)

7 Universidade Estadual Paulista (BR)

8University of California, San Diego (US)
9 University of Nebraska (US)

10 University of Notre Dame (US)
11University of Wisconsin-Madison (US)

Connecting diverse and sometimes non-Grid enabled resource types to the CMS Global Pool has been a major goal of CMS and a challenge. This
work includes not only adding Central Facilities or Opportunistic resources to the Global Pool, but also managing prioritization to local users of

beyond WLCG pledged resources at CMS sites and mechanisms to access these resources through local Institutional schedulers.

Connecting different Resource Types

Connecting Institutional
SCHEDDs to the Global Pool in

a manageable way

Local submission to CMS LPC at FNAL

FNAL LPC
● The LHC Physics Center (LPC) is a regional center at Fermilab funded by the U.S

CMS Operations Program to provide computing resources for analysis to its

members and it has a local submission interface.

● The CMS Remote Crab Analysis Builder (CRAB) is the standard python-based CMS

tool to submit jobs to the grid. The current framework relies on a server-client

model, where the user interacts with the client and the server is in charge of

submitting remotely to the CMS Global Pool, meaning local submission from the

client is not possible.

● Since CRAB3 does not support local submission and the LPC submission interface

cannot be exposed globally, enabling CRAB3 submission at the LPC is not

straightforward.

● In order to solve this problem, LPC user jobs are routed from the CRAB3 grid

schedulers to the LPC using a submission interface set up specifically to accept

CRAB3 jobs.

● An HTCondor CE (referred as "CMS LPC CE"), sitting behind a firewall to only allow

CRAB 3 scheduler connections (any other inbound traffic is denied by default),

accept these jobs and route them to the local LPC batch system (HTCondor).

● The CMS LPC CE also periodically fetches the list of LPC users from the GUMS

server. An additional process runs on the GUMS server to query the DNs of all LPC

users and write the result to a file. The node running the GUMS server already

runs a web server. The file containing DNs of the LPC users is made available on

this web server, from where it is retrieved by CMS LPC CE. GUMS web server is not

supposed to be exposed externally, so this additional hop at the CMS LPC CE is

needed.

● Job submission up until the submission to CRAB3 schedulers works just as it would

for another grid site. On the schedulers (or schedds), there is an HTCondor job

router daemon running.

● The job router running on the scheduler fetches and caches the DNs of LPC users.

The job router routes a job to CMS LPC at FNAL if it is submitted by an LPC user

and the job whitelists ‘T3_US_FNALLPC’ as its desired Site to run on. All other jobs

on the scheduler are ignored. As a safety measure, the HTCondor CE is also

configured to only accept jobs from LPC users. A non LPC user job that gets routed

to the CE by mistake is rejected.

CMS HLT Integration
● CMS employs a multi level triggering system to collect data from the detector on the LHC.

The highest level of the trigger system (known as the High Level Trigger or HLT) is a large

compute farm of over 15,000 cores and is completely owned and managed by CMS.

● Given the size of the resource, it was decided to use the compute resources during LHC

fills when they are completely idle. Therefore, CMS overlaid an OpenStack infrastructure

over the HLT resources during the first long shutdown of the LHC.

● The use of HLT as a general purpose compute resource is intended to never interfere with

its primary purpose. The compute farm is still primarily being utilized for its triggering role

during data acquisition. It is only during the idle cycles that the cloud infrastructure

becomes active and used as a general purpose resource like normal grid sites.

● Workflow management agent (or WMAgent) is a python based agent used to handle

submissions to the HTCondor scheduler daemon (condor_schedd). WMAgent is

responsible for collecting, building and submitting tasks as well as monitoring their status.

● HLT cloud is registered as “T2_CH_CERN_HLT” in the CMS site database (siteDB).

WMAgent uses this site name for submission. All the relevant HTCondor configurations are

part of the images VMs used by the HLT.

● During their instantiation, the VMs are passed a service certificate. This service certificate

is then used by the VMs to authenticate with the global pool. Once the VMs show up in

the pool, they are matched to jobs whitelisting ‘T2_CH_CERN_HLT’ by the negotiator

running on the central manager.

● Once a match has been made, HTCondor connection broker establishes a connection

between the scheduler and the VM. A block diagram of integration has been shown in

figure diagram at the bottom.

● When the HLT needs to be used as a trigger, the VMs are suspended to disk. The running

jobs are then configured to wait 24 hours for the VMs to come back up. This allows jobs to

resume from they had left off and increases throughput.

● The HLT VMs also connect to schedulers and back up central infrastructure at FNAL,

allowing them to make use of the HA capability of the CMS Global pool.

HLT integration into the Global Pool

Opportunistic Resources
OSG Resources

● CMS makes use of many over the pledge compute resources opportunistically in the
global pool. Most of this comes from grid sites already part of the CMS collaboration.

● OSG and CMS work in close collaboration with each other and an effort was made to
explore the possibility of using OSG VO resources for CMS general purpose computing. To
that end a special site name ‘T3_US_OSG’ was registered in the CMS site database.

● ‘T3_US_OSG’ contains many compute elements willing to run CMS jobs opportunistically.
Most sites under the umbrella of T3_US_OSG support either VO ATLAS or VO OSG.
These VOs have almost identical requirements from their worker nodes as CMS making it
easier for CMS to make use of them and not put any additional operational overhead on
the sites.

● CMS identifies sites in OSG glideinWMS factories using a classAd named
‘GLIDEIN_CMSSite’. This classAd was set on all CEs which can be opportunistically utilized
by CMS. The CMS VO specific glideinWMS frontend then picks up all entries marked with
‘T3_US_OSG’ GLIDEIN_CMSSite name.

● Currently, T3_US_OSG contains the following resources:

● These resources are used for production jobs. CMS cannot utilize local storage at these
sites and hence can only run GEN-SIM workflows. Stage out for these workflows is done to
FNAL where all the subsequent steps which process staged output then execute at FNAL.
The following dashboard report shows production jobs completed on this resource.

While CRAB handles grid job submission for analysis jobs depending on the CMS framework
executable (cmsRun), late-stage analysis tasks often are independent and batch systems are
more suitable to handle these type of jobs. CMS Connect is used as the submission interface
for condor-like jobs to the CMS Global Pool, but sometimes Institutional Pools also provide
non-grid enabled local resources to their users for these tasks and using them both is the ideal.

However, allowing many Institutional schedulers to access the Global Pool can bring
management problems as user accounting, job reporting and job control measurements to
protect the Global pool have to be considered, so having a central submission interface these
schedulers can talk to as a gateway before going to the Global Pool is important. In order to do
this, glideins are submitted by the users via a python-based glidein package (pyglidein) to CMS
Connect so that these can talk to their Institutional submission scheduler to overflow jobs into
the Global Pool.

We use pyglideins (an ICECUBE python client-server pair for submitting HTCondor glidein jobs
on remote batch systems) [1] to connect such Institutional schedds with CMS Connect.

CMS Global Pool

GWMS collectors

Pyglideins workflow diagram

T3_US_OSG

● AGLT2 (U. Michigan)
● Clemson-Palmetto (Clemson U.)
● MWT2 (U. Chicago, U. Illinois, Indiana U.)
● SU-OG-CE / SU-OG-CE1 (Syracuse U.)

Resource Names

[1] https://github.com/WIPACrepo/pyglidein

Dashboard reporting on September 27 to 29, 2016 for
T3_US_OSG

High Priority Access for a restricted User
Community

PRIORITY BEYOND WLCG PLEDGES

CMS Grid Sites pledge resources for the experiment to
use and the prioritization of jobs is handled by the CMS
central infrastructure so all CMS users are treated equally.
But what happens when a Site wants to give priority to
their local physics group on top of their pledge? The
following diagram explains how a local Site can make use
of their dedicated over the pledge resources.

A list of users (or VOMS groups, e.g: uscms, decms, itcms,
etc) is published by a site admin via CVMFS/SITECONF.
When the user submits a CRAB job, the CRAB server will
look at CVMFS for the user/group list to see which ones
are "local" and will create a condor classAd named "CMS
Groups". The Global Pool central infrastructure then look
up for this information and submits a special glidein with
VOMS FQAN=‘/cms/local/Role=pilot’ which the site can
then use to give these pilots a higher priority.

HIGH AVAILABILITY USAGE
CERN CAF

The CMS CERN Analysis Facility (CAF) is dedicated to latency-critical
activities like detector calibration and alignment, detector and trigger
commissioning, and very high priority physics analyses. Connected to
the Global Pool and accessible with CRAB3, the modern analysis
middleware of CMS, the CAF resource is restricted to a small number of
users. Similar in structure to the Tier-0 facility on OpenStack, this set of
resources is available on demand with very low latency and replaced a
similar resource on LSF at CERN.

OpenStack VMs are spawned by the GlideinWMS factory. These are
connected to the CMS Tier 0 and global pool CRAB3 schedds flock jobs
to it. The CAF activity can be bursting and have long idle periods due to
its high availability and low-latency nature, so connecting them to the
T0 rather than directly prevents having idle cores in the pool interfere
with pilot provisioning at the grid sites.

RESTRICTED USAGE
TEXAS A&M

There are some use cases where a local
administrator might want to start a
glidein against a particular local user’s
personal account. This brings an
additional constraint of not having
multiple users share the glidein. Only the
specified user should be able to make
use of the glidein.
In such cases, a site administrator is
required to set an environment variable
“USER_DN” with the DN of user whose
personal account is being to run the
glidein.

During the glidein startup process, a
local glidein will look for this
environment variable. If the variable is
defined, an additional constraint is
added to the START expression to only
allow user with this particular DN to run
jobs on this glidein. This has been
successfully implemented and tested
using the global pool at Texas A&M
University (TAMU) in the U.S.

CMS Connect
Submit Machine

Local Institutional
Submit Machine

